Advertisement

Ambient Explanations: Ambient Intelligence and Explainable AI

  • Jörg CassensEmail author
  • Rebekah Wegener
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11912)

Abstract

With renewed prominence of Explainable AI (XAI), many areas are revisiting early work on Explainability. Within the broader field of Artificial Intelligence (AI), Ambient Intelligence (AmI) has an advantage in the development of transparent and ethical systems because such work has long been an integral part of research, development and operations in AmI. In this paper we argue that, because of the paradigm requirements of system intelligence, social intelligence and embeddedness, AmI is uniquely prepared to support the push for ethical and transparent technology development. We argue that Ambient Intelligent Systems are well suited to infer when an explanation might be needed (and of what kind), and the form that it should take. We further propose AmI devices as mediators between humans and machines because they can combine social and technical systems in a fully embedded way.

Keywords

Explanations Semiotics Context Ambient Intelligence 

References

  1. 1.
    Achinstein, P.: The Nature of Explanation. Oxford University Press, Oxford (1983)Google Scholar
  2. 2.
    Biran, O., Cotton, C.: Explanation and justification in machine learning: a survey. In: IJCAI 2017 Workshop on Explainable AI (XAI) (2017)Google Scholar
  3. 3.
    Cassens, J., Kofod-Petersen, A.: Explanations and case-based reasoning in ambient intelligent systems. In: Wilson, D.C., Khemani, D. (eds.) ICCBR 2007 Workshop Proceedings, Belfast, Northern Ireland, pp. 167–176 (2007)Google Scholar
  4. 4.
    Cassens, J., Wegener, R.: Making use of abstract concepts–systemic-functional linguistics and ambient intelligence. In: Bramer, M. (ed.) IFIP AI 2008. ITIFIP, vol. 276, pp. 205–214. Springer, Boston, MA (2008).  https://doi.org/10.1007/978-0-387-09695-7_20CrossRefGoogle Scholar
  5. 5.
    De Ruyter, B., Aarts, E.: Experience research: a methodology for developing human-centered interfaces. In: Nakashima, H., Aghajan, H., Augusto, J.C. (eds.) Handbook of Ambient Intelligence and Smart Environments, pp. 1039–1067. Springer, Boston (2010).  https://doi.org/10.1007/978-0-387-93808-0_39CrossRefGoogle Scholar
  6. 6.
    Dourish, P.: What we talk about when we talk about context. Pers. Ubiquit. Comput. 8(1), 19–30 (2004)CrossRefGoogle Scholar
  7. 7.
    Edwards, B.J., Williams, J.J., Gentner, D., Lombrozo, T.: Explanation recruits comparison in a category-learning task. Cognition 185, 21–38 (2019)CrossRefGoogle Scholar
  8. 8.
    Floridi, L., et al.: AI4people – an ethical framework for a good ai society: opportunities, risks, principles, and recommendations. Mind. Mach. 28(4), 689–707 (2018)CrossRefGoogle Scholar
  9. 9.
    van Fraassen, B.C.: The Scientific Image. Clarendon Press, Oxford (1980)CrossRefGoogle Scholar
  10. 10.
    Gunning, D., Aha, D.: Darpa’s explainable artificial intelligence (XAI) program. AI Mag. 40(2), 44–58 (2019)CrossRefGoogle Scholar
  11. 11.
    Halliday, M.A.: Language as a Social Semiotic: The Social Interpretation of Language and Meaning. University Park Press, Baltimore (1978)Google Scholar
  12. 12.
    Hasan, R.: Situation and the definition of genre. In: Grimshaw, A. (ed.) What’s Going on Here? Complementary Analysis of Professional Talk: Volume 2 of the Multiple Analysis Project. Ablex, Norwood (1994)Google Scholar
  13. 13.
    Hasan, R.: Speaking with reference to context. In: Ghadessy, M. (ed.) Text and Context in Functional Linguistics. John Benjamins, Amsterdam (1999)Google Scholar
  14. 14.
    Kofod-Petersen, A., Aamodt, A.: Contextualised ambient intelligence through case-based reasoning. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS (LNAI), vol. 4106, pp. 211–225. Springer, Heidelberg (2006).  https://doi.org/10.1007/11805816_17CrossRefGoogle Scholar
  15. 15.
    Kofod-Petersen, A., Cassens, J.: Modelling with problem frames: explanations and context in ambient intelligent systems. In: Beigl, M., Christiansen, H., Roth-Berghofer, T.R., Kofod-Petersen, A., Coventry, K.R., Schmidtke, H.R. (eds.) CONTEXT 2011. LNCS (LNAI), vol. 6967, pp. 145–158. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-24279-3_17CrossRefGoogle Scholar
  16. 16.
    Leake, D.B.: Evaluating Explanations: A Content Theory. Lawrence Erlbaum Associates, New York (1992)Google Scholar
  17. 17.
    Leake, D.B.: Goal-based explanation evaluation. In: Goal-Driven Learning, pp. 251–285. MIT Press, Cambridge (1995)Google Scholar
  18. 18.
    Lisboa, P.J.G.: Interpretability in machine learning – principles and practice. In: Masulli, F., Pasi, G., Yager, R. (eds.) WILF 2013. LNCS (LNAI), vol. 8256, pp. 15–21. Springer, Cham (2013).  https://doi.org/10.1007/978-3-319-03200-9_2CrossRefzbMATHGoogle Scholar
  19. 19.
    Lombrozo, T.: The structure and function of explanations. Trends Cogn. Sci. 10(10), 464–470 (2006)CrossRefGoogle Scholar
  20. 20.
    Lombrozo, T.: The instrumental value of explanations. Philos. Compass 6(8), 539–551 (2011)CrossRefGoogle Scholar
  21. 21.
    Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. (2018)Google Scholar
  22. 22.
    Roth-Berghofer, T.R., Cassens, J.: Mapping goals and kinds of explanations to the knowledge containers of case-based reasoning systems. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 451–464. Springer, Heidelberg (2005).  https://doi.org/10.1007/11536406_35CrossRefGoogle Scholar
  23. 23.
    Schank, R.C.: Explanation Patterns - Understanding Mechanically and Creatively. Lawrence Erlbaum, New York (1986)Google Scholar
  24. 24.
    Shortliffe, E.H.: Computer-based Medical Consultations: MYCIN, New York (1976)Google Scholar
  25. 25.
    Streitz, N., Charitos, D., Kaptein, M., Böhlen, M.: Grand challenges for ambient intelligence and implications for design contexts and smart societies. J. Ambient. Intell. Smart Environ. 11(1), 87–107 (2019)CrossRefGoogle Scholar
  26. 26.
    Swartout, W.R.: What kind of expert should a system be? XPLAIN: a system for creating and explaining expert consulting programs. Artif. Intell. 21, 285–325 (1983)CrossRefGoogle Scholar
  27. 27.
    Sørmo, F., Cassens, J., Aamodt, A.: Explanation in case-based reasoning - perspectives and goals. Artif. Intell. Rev. 24(2), 109–143 (2005)CrossRefGoogle Scholar
  28. 28.
    Vasilyeva, N., Wilkenfeld, D., Lombrozo, T.: Contextual utility affects the perceived quality of explanations. Psychon. Bull. Rev. 24(5), 1436–1450 (2017)CrossRefGoogle Scholar
  29. 29.
    Wegener, R., Cassens, J., Butt, D.: Start making sense: systemic functional linguistics and ambient intelligence. Rev. d’Intelligence Artif. 22(5), 629–645 (2008).  https://doi.org/10.3166/ria.22.629-645CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of HildesheimHildesheimGermany
  2. 2.Paris Lodron University of SalzburgSalzburgAustria

Personalised recommendations