Quark Matter in Neutron Stars

  • William M. SpinellaEmail author
  • Fridolin Weber
  • Gustavo A. Contrera
  • Milva G. Orsaria
Part of the FIAS Interdisciplinary Science Series book series (FIAS)


The nonlocal three-flavor Nambu-Jona-Lasinio model is used to study quark deconfinement in the cores of neutron stars (NSs). The quark-hadron phase transition is modeled using both the Maxwell construction and the Gibbs construction. For the Maxwell construction, we find that all NSs with core densities beyond the phase transition density are unstable. Therefore, no quark matter cores would exist inside such NSs. The situation is drastically different if the phase transition is treated as a Gibbs transition, resulting in stable NSs whose stellar cores are a mixture of hadronic matter and deconfined quarks. The largest fractions of quarks achieved in the quark-hadron mixed phase are around 50%. No choice of parametrization or composition leads to a pure quark matter core. The inclusion of repulsive vector interactions among the quarks is crucial since the equation of state (EoS) in the quark-hadron mixed phase is significantly softer than that of the pure hadronic phase.



G.A.C. and M.G.O. thank CONICET and UNLP for financial support under Grants PIP 0714, G 140, G157, and X824. F.W. is supported by the National Science Foundation (USA) under Grants PHY-1411708 and PHY-1714068.


  1. 1.
    W. Becker (ed.), Neutron Stars and Pulsars, Astrophysics and Space Science Library, vol. 357 (Springer, 2009)Google Scholar
  2. 2.
    J. Antoniadis et al., Science 340, 6131 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    P. Demorest, T. Pennucci, S. Ransom, M. Roberts, J. Hessels, Nature 467, 1018 (2010)CrossRefGoogle Scholar
  4. 4.
    E. Fonseca et al., Astrophys. J. 832, 167 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    V.A. Ambartsumyan, G.S. Saakyan, Sov. Ast. 4, 187 (1960)ADSGoogle Scholar
  6. 6.
    N.K. Glendenning, Astrophys. J. 293, 470 (1985)ADSCrossRefGoogle Scholar
  7. 7.
    A. Drago, A. Lavagno, G. Pagliara, Phys. Rev. D 89, 043014 (2014); A. Drago, A. Lavagno, G. Pagliara, Daniele Pigato, Phys. Rev. D 90, 065809 (2014)Google Scholar
  8. 8.
    D.D. Ivanenko, D.F. Kurdgelaidze, Astrophysics 1, 251 (1965)ADSCrossRefGoogle Scholar
  9. 9.
    H. Fritzsch, M. Gell-Mann, H. Leutwyler, Phys. Lett. 47B, 365 (1973)ADSCrossRefGoogle Scholar
  10. 10.
    K. Rajagopal, F. Wilczek, The condensed matter physics of QCD, in At the Frontier of Particle Physics (World Scientific, 2001), pp. 2061–2151Google Scholar
  11. 11.
    M.G. Alford, K. Rajagopal, T. Schaefer, A. Schmitt, Rev. Mod. Phys. 80, 1455 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    I.F. Ranea-Sandoval, M.G. Orsaria, S. Han, F. Weber, W.M. Spinella, Phys. Rev. D 96, 065807 (2018)Google Scholar
  13. 13.
    M. Buballa et al., J. Phys. G: Nucl. Part. Phys. 41, 123001 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    W.M. Spinella, A Systematic Investigation of Exotic Matter in Neutron Stars. Ph.D. thesis, Claremont Graduate University & San Diego State University (2017)Google Scholar
  15. 15.
    M. Orsaria, H. Rodrigues, F. Weber, G.A. Contrera, Phys. Rev. C 87, 023001 (2013)ADSGoogle Scholar
  16. 16.
    M. Orsaria, H. Rodrigues, F. Weber, G.A. Contrera, Phys. Rev. C 89, 015806 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    G.A. Contrera, D. Gómez Dumm, N.N. Scoccola, Phys. Lett. B 661, 113 (2008)Google Scholar
  18. 18.
    G.A. Contrera, D. Gómez Dumm, N.N. Scoccola, Phys. Rev. C 81, 054005 (2010)Google Scholar
  19. 19.
    A. Scarpettini, D. Gómez Dumm, N.N. Scoccola, Phys. Rev. C 69, 114018 (2004)Google Scholar
  20. 20.
    I.F. Ranea-Sandoval, S. Han, M.G. Orsaria, G.A. Contrera, F. Weber, M.G. Alford, Phys. Rev. C 93, 045812 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    M.B. Parappilly, P.O. Bownman, U.M. Heller, D.B. Leinweber, A.G. Williams, J.B. Zhang, Phys. Rev. C 73, 054504 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    L.F. Palhares, E.S. Fraga, Phys. Rev. C 82, 125018 (2010)ADSGoogle Scholar
  23. 23.
    M.B. Pinto, V. Koch, J. Randrup, Phys. Rev. C 86, 025203 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    B.W. Mintz, R. Stiele, R.O. Ramos, J. Schaffner-Bielich, Phys. Rev. C 87, 036004 (2013)Google Scholar
  25. 25.
    G. Lugones, A.G. Grunfeld, M. Al Ajmi, Phys. Rev. C 88, 045803 (2013)Google Scholar
  26. 26.
    D.N. Voskresensky, M. Yasuhira, T. Tatsumi, Nucl. Phys. A 723, 291 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    N. Yasutake, R. Lastowiecki, S. Benic, D. Blaschke, T. Maruyama, T. Tatsumi, Phys. Rev. C 89, 065803 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    N.K. Glendenning, Phys. Rep. 342, 393 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    X. Na, R. Xu, F. Weber, R. Negreiros, Phys. Rev. C 86, 123016 (2012)ADSGoogle Scholar
  30. 30.
    W.M. Spinella, F. Weber, G.A. Contrera, M.G. Orsaria, Eur. Phys. J. A 52, 61 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    J.D. Walecka, Ann. Phys. (NY) 83, 491 (1974)ADSCrossRefGoogle Scholar
  32. 32.
    B.D. Serot, J.D. Walecka, Adv. Nucl. Phys. 16, 1 (1986)Google Scholar
  33. 33.
    J. Boguta, A.R. Bodmer, Nucl. Phys. A 292, 413 (1977)ADSCrossRefGoogle Scholar
  34. 34.
    J. Boguta, J. Rafelski, Phys. Lett. 71B, 22 (1977)ADSCrossRefGoogle Scholar
  35. 35.
    J. Boguta, H. Stöcker, Phys. Lett. 120B, 289 (1983)ADSCrossRefGoogle Scholar
  36. 36.
    R.D. Mellinger, F. Weber, W. Spinella, G.A. Contrera, M.G. Orsaria, Universe 3, 5 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    N.K. Glendenning, S.A. Moszkowski, Phys. Rev. Lett. 67, 2414 (1991)ADSCrossRefGoogle Scholar
  38. 38.
    S. Typel, G. Ropke, T. Klahn, D. Blaschke, H.H. Wolter, Phys. Rev. C 81, 015803 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    G.A. Lalazissis, T. Niksic, D. Vretenar, P. Ring, Phys. Rev. C 71, 024312 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    T.A. Rijken, M.M. Nagels, Y. Yamamoto, Prog. Theor. Phys. Suppl. 185, 14 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • William M. Spinella
    • 1
    Email author
  • Fridolin Weber
    • 2
    • 3
  • Gustavo A. Contrera
    • 4
    • 5
    • 6
  • Milva G. Orsaria
    • 5
    • 6
  1. 1.School of Physical Sciences and TechnologiesIrvine Valley CollegeIrvineUSA
  2. 2.Department of PhysicsSan Diego State UniversitySan DiegoUSA
  3. 3.Center for Astrophysics and Space SciencesUniversity of California, San DiegoLa JollaUSA
  4. 4.Facultad de Ciencias ExactasIFLP, UNLP, CONICETLa PlataArgentina
  5. 5.Grupo de Gravitación, Astrofísica y Cosmología, Facultad de Ciencias Astronómicas y GeofísicasUniversidad Nacional de La PlataLa PlataArgentina
  6. 6.CONICETBuenos AiresArgentina

Personalised recommendations