Advertisement

Regge Trajectories of Radial Meson Excitations: Exploring the Dyson–Schwinger and Bethe–Salpeter Approach

  • Robert GreifenhagenEmail author
  • Burkhard Kämpfer
  • Leonid P. Kaptari
Chapter
  • 27 Downloads
Part of the FIAS Interdisciplinary Science Series book series (FIAS)

Abstract

The combined Dyson–Schwinger and Bethe–Salpeter equations in rainbow-ladder approximation are used to search for Regge trajectories of mesons in the pseudo-scalar and vector channels. We focus on the often employed Alkofer–Watson–Weigel kernel which is known to deliver good results for the ground state meson spectra; it provides linear Regge trajectories in the \(J^P= 0^-\) channel.

Notes

Acknowledgements

The authors gratefully acknowledge the collaboration with S. M. Dorkin, T. Hilger, and M. Viebach on the topic.

References

  1. 1.
    Z. Yang, Q. Wang, U.G. Meissner, Phys. Lett. B 767, 470 (2017).  https://doi.org/10.1016/j.physletb.2017.01.023, arXiv:1609.08807 [hep-ph]
  2. 2.
    A.V. Anisovich, V.V. Anisovich, A.V. Sarantsev, Phys. Rev. D 62, 051502 (2000).  https://doi.org/10.1103/PhysRevD.62.051502, arXiv:hep-ph/0003113
  3. 3.
    P. Masjuan, E.R. Arriola, W. Broniowski, Phys. Rev. D 85, 094006 (2012).  https://doi.org/10.1103/PhysRevD.85.094006, arXiv:1203.4782 [hep-ph]
  4. 4.
    P. Masjuan, E.R. Arriola, W. Broniowski, Phys. Rev. D 87(11), 118502 (2013).  https://doi.org/10.1103/PhysRevD.87.118502, arXiv:1305.3493 [hep-ph]
  5. 5.
    E. Klempt, A. Zaitsev, Phys. Rept. 454, 1 (2007).  https://doi.org/10.1016/j.physrep.2007.07.006, arXiv:0708.4016 [hep-ph]
  6. 6.
    S.J. Brodsky, G.F. de Teramond, H.G. Dosch, J. Erlich, Phys. Rept. 584, 1 (2015).  https://doi.org/10.1016/j.physrep.2015.05.001, arXiv:1407.8131 [hep-ph]
  7. 7.
    D.V. Bugg, Phys. Rev. D 87(11), 118501 (2013).  https://doi.org/10.1103/PhysRevD.87.118501, arXiv:1209.3481 [hep-ph]
  8. 8.
    D.V. Bugg, Phys. Rep. 397, 257 (2004).  https://doi.org/10.1016/j.physrep.2004.03.008, arXiv:hep-ex/0412045
  9. 9.
    S.S. Afonin, Eur. Phys. J. A 29, 327 (2006).  https://doi.org/10.1140/epja/i2006-10080-2, arXiv:hep-ph/0606310
  10. 10.
    S.S. Afonin, I.V. Pusenkov, EPJ Web Conf. 125, 04006 (2016).  https://doi.org/10.1051/epjconf/201612504006, arXiv:1606.05218 [hep-ph]
  11. 11.
    D. Ebert, R.N. Faustov, V.O. Galkin, Eur. Phys. J. C 66, 197 (2010).  https://doi.org/10.1140/epjc/s10052-010-1233-6, arXiv:0910.5612 [hep-ph]
  12. 12.
    D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 79, 114029 (2009).  https://doi.org/10.1103/PhysRevD.79.114029, arXiv:0903.5183 [hep-ph]
  13. 13.
    S.S. Afonin, Phys. Lett. B 675, 54 (2009).  https://doi.org/10.1016/j.physletb.2009.03.073, arXiv:0903.0322 [hep-ph]
  14. 14.
    S.S. Afonin, Phys. Lett. B 678, 477 (2009).  https://doi.org/10.1016/j.physletb.2009.06.071, arXiv:0902.3959 [hep-ph]
  15. 15.
    D. Li and M. Huang, JHEP 1311, 088 (2013).  https://doi.org/10.1007/JHEP11(2013)088,arXiv:1303.6929 [hep-ph]
  16. 16.
    D. Li, M. Huang, Q.S. Yan, Eur. Phys. J. C 73, 2615 (2013).  https://doi.org/10.1140/epjc/s10052-013-2615-3, arXiv:1206.2824 [hep-th]
  17. 17.
    R. Zollner, B. Kampfer, arXiv:1708.05833 [hep-th]
  18. 18.
    C.S. Fischer, S. Kubrak, R. Williams, Eur. Phys. J. A 50, 126 (2014).  https://doi.org/10.1140/epja/i2014-14126-6, arXiv:1406.4370 [hep-ph]
  19. 19.
    T. Hilger, M. Gomez-Rocha, A. Krassnigg and W. Lucha, Eur. Phys. J. A 53(10), 213 (2017).  https://doi.org/10.1140/epja/i2017-12384-4, arXiv:1702.06262 [hep-ph]
  20. 20.
    D. Binosi, L. Chang, J. Papavassiliou, S.X. Qin, C.D. Roberts, Phys. Rev. D 93(9), 096010 (2016).  https://doi.org/10.1103/PhysRevD.93.096010, arXiv:1601.05441 [nucl-th]
  21. 21.
    K.l. Wang, Y.X. Liu, L. Chang, C.D. Roberts, S.M. Schmidt, Phys. Rev. D 87(7), 074038 (2013).  https://doi.org/10.1103/PhysRevD.87.074038, arXiv:1301.6762 [nucl-th]
  22. 22.
    H. Suganuma, T.M. Doi, K. Redlich, C. Sasaki, J. Phys. G 44, 124001 (2017).  https://doi.org/10.1088/1361-6471/aa8e2f, arXiv:1709.05981 [hep-lat]
  23. 23.
    R. Alkofer, P. Watson, H. Weigel, Phys. Rev. D 65, 094026 (2002).  https://doi.org/10.1103/PhysRevD.65.094026, arXiv:hep-ph/0202053
  24. 24.
    S.M. Dorkin, M. Viebach, L.P. Kaptari, B. Kampfer, J. Mod. Phys. 7, 2071 (2016).  https://doi.org/10.4236/jmp.2016.715182, arXiv:1512.06596 [nucl-th]
  25. 25.
    S.M. Dorkin, L.P. Kaptari, B. Kampfer, Phys. Rev. C 91(5), 055201 (2015).  https://doi.org/10.1103/PhysRevC.91.055201, arXiv:1412.3345 [hep-ph]
  26. 26.
    S.M. Dorkin, L.P. Kaptari, T. Hilger, B. Kampfer, Phys. Rev. C 89, 034005 (2014).  https://doi.org/10.1103/PhysRevC.89.034005, arXiv:1312.2721 [hep-ph]
  27. 27.
    S.M. Dorkin, T. Hilger, L.P. Kaptari, B. Kampfer, Few Body Syst. 49, 247 (2011).  https://doi.org/10.1007/s00601-010-0108-6, arXiv:1008.2135 [nucl-th]
  28. 28.
    P. Maris, P.C. Tandy, Phys. Rev. C 60, 055214 (1999).  https://doi.org/10.1103/PhysRevC.60.055214, arXiv:nucl-th/9905056
  29. 29.
    R. Greifenhagen, Investigation of the AWW kernel for describing the excited meson spectrum in a combined Dyson-Schwinger– Bethe-Salpeter approach. Master thesis, TU Dresden (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Robert Greifenhagen
    • 1
    Email author
  • Burkhard Kämpfer
    • 1
    • 2
  • Leonid P. Kaptari
    • 1
    • 3
  1. 1.Helmholtz-Zentrum Dresden-RossendorfDresdenGermany
  2. 2.TU Dresden, Institute of Theoretical PhysicsDresdenGermany
  3. 3.JINR, Bogoliubov Institute for Theoretical PhysicsDubnaRussia

Personalised recommendations