Photon Absorption and Electron Scattering by Endohedrals

  • Miron Ya. AmusiaEmail author
Part of the FIAS Interdisciplinary Science Series book series (FIAS)


We concentrate here on photon absorption as well as electron and positron scattering upon endohedrals that consist of a fullerenes shell and an inner atom A. The aim is to understand the effect of fullerene electron shell in formation of corresponding cross-section. We consider the problem substituting the action of a complex multiatomic fullerenes shell by a combination of static pseudopotential and dynamic polarization potential. The electron correlations in the atom A are taken into account in the frame of the random phase approximation with exchange (RPAE). We demonstrate that the fullerenes shell strongly affects the cross-sections, bringing in a number of peculiarities, such as confinement resonances and giant-endohedral resonances and partial wave Ramsauer-type minima. Numerical data are obtained for endohedrals A@C60 and A@C60@C240, where A are noble gas atoms He, Ar and Xe.


  1. 1.
    H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Nature 318(6042), 162–163 (1985)ADSCrossRefGoogle Scholar
  2. 2.
    J.R. Heath, S.C. O’Brien, Q. Zhang, Y. Liu, R.F. Curl, H.W. Kroto, F.K. Tillel, R.E. Smalley, J. Am. Chem. Soc. 107, 7779 (1985)CrossRefGoogle Scholar
  3. 3.
    M.Ya. Amusia, Chem. Phys. 414, 168–175 (2013)CrossRefGoogle Scholar
  4. 4.
    V.K. Dolmatov, J.L. King, J.C. Oglesby, J. Phys. B 45, 105102 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    M.Ya. Amusia, L.V. Chernysheva, V.G. Yarzhemsky, Handbook of Theoretical Atomic Physics, Data for Photon Absorption, Electron Scattering, Vacancies Decay (Springer, Berlin, 2012), pp. 1–806Google Scholar
  6. 6.
    M.Ya. Amusia, Atomic Photoeffect (Plenum Press, New York, London, 1990), pp. 1–303CrossRefGoogle Scholar
  7. 7.
    M.Ya. Amusia, L.V. Chernysheva, E.Z. Liverts, Phys. Rev. A 80, 032503-1-12 (2009)Google Scholar
  8. 8.
    M.Ya. Amusia, A.S. Baltenkov, Phys. Let. A 360, 294–298 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    R.K. Yoo, B. Ruscic, J. Berkowitz, J. Chem. Phys. 96, 911 (1992)Google Scholar
  10. 10.
    M.Ya. Amusia, A.S. Baltenkov, L.V. Chernysheva, JETP 134, 2(8), 221–230 (2008)Google Scholar
  11. 11.
    M.Ya. Amusia, A.S. Baltenkov, Phys. Rev. A 73, 063206 (2006)Google Scholar
  12. 12.
    M.Ya. Amusia, L.V. Chernysheva, JETP Lett. 101(7), 503–506 (2015)Google Scholar
  13. 13.
    M.Ya. Amusia, L.V. Chernysheva, JETP Lett. 103(4), 260–264 (2016)Google Scholar
  14. 14.
    V.K. Dolmatov, M.Ya. Amusia, L.V. Chernysheva, Phys. Rev. A 95, 012709 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    M.Ya. Amusia, N.A. Cherepkov, L.V. Chernysheva, S.G. Shapiro, J. Phys. B: At. Mol. Phys. 9(17), L531–L534 (1976)Google Scholar
  16. 16.
    M.Ya. Amusia, L.V. Chernysheva, JETP Lett. 106(1), 1–6 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Racah Institute of Physics, The Hebrew UniversityJerusalemIsrael
  2. 2.A. F. Ioffe Physical-Technical InstituteSt. PetersburgRussia

Personalised recommendations