ConceptMap: A Conceptual Approach for Formulating User Preferences in Large Information Spaces

  • Alireza TabebordbarEmail author
  • Amin Beheshti
  • Boualem Benatallah
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11881)


In a large information space a user needs to iteratively investigate the data to formulate her preferences for IR systems. In recent years several visualization techniques have been proposed to help a user to better formulate her preferences. However, using these solutions a user needs to explicitly specify her preferences for IR systems in forms of keywords or phrases. In this paper we present ConceptMap, a system that takes the advantage of deep learning and a knowledge lake to provide a conceptual summary of the information space. ConceptMap allows a user to specify her preferences implicitly as a set of concepts without the need to iteratively investigate the information space. It provides a 2D Radial Map of concepts where a user can rank items relevant to her preferences through dragging and dropping. Our experiment results shows that ConceptMap can help users to better formulate their preferences when they need to retrieve varied and comprehensive list of information across a large amount of data.


Formulating user preferences Conceptual visual summary Conceptual information retrieval 



We Acknowledge the AI-enabled Processes (AIP) Research Centre for funding part of this research.

We Acknowledge the Data to Decisions CRC (D2D CRC) and the Cooperative Research Centres Program for funding part of this research.


  1. 1.
    Alexander, E., Kohlmann, J., Valenza, R., Witmore, M., Gleicher, M.: Serendip: topic model-driven visual exploration of text corpora. In: 2014 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 173–182. IEEE (2014)Google Scholar
  2. 2.
    Beheshti, A., Benatallah, B., Nouri, R., Chhieng, V.M., Xiong, H., Zhao, X.: CoreDB: a data lake service. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, CIKM 2017, Singapore, 06–10 November 2017, pp. 2451–2454 (2017)Google Scholar
  3. 3.
    Beheshti, A., Benatallah, B., Nouri, R., Tabebordbar, A.: CoreKG: a knowledge lake service. PVLDB 11(12), 1942–1945 (2018)Google Scholar
  4. 4.
    Beheshti, A., Benatallah, B., Tabebordbar, A., Motahari-Nezhad, H.R., Barukh, M.C., Nouri, R.: DataSynapse: a social data curation foundry. Distrib. Parallel Databases 37(3), 351–384 (2019)CrossRefGoogle Scholar
  5. 5.
    Beheshti, A., Vaghani, K., Benatallah, B., Tabebordbar, A.: CrowdCorrect: a curation pipeline for social data cleansing and curation. In: Mendling, J., Mouratidis, H. (eds.) CAiSE 2018. LNBIP, vol. 317, pp. 24–38. Springer, Cham (2018). Scholar
  6. 6.
    Beheshti, S., Benatallah, B., Venugopal, S., Ryu, S.H., Motahari-Nezhad, H.R., Wang, W.: A systematic review and comparative analysis of cross-document coreference resolution methods and tools. Computing 99(4), 313–349 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Beheshti, S., Tabebordbar, A., Benatallah, B., Nouri, R.: On automating basic data curation tasks. In: Proceedings of the 26th International Conference on World Wide Web Companion, Perth, Australia, 3–7 April 2017, pp. 165–169 (2017)Google Scholar
  8. 8.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)Google Scholar
  9. 9.
    Brooke, J., et al.: SUS-a quick and dirty usability scale. Usability Eval. Ind. 189(194), 4–7 (1996)Google Scholar
  10. 10.
    Carterette, B., Bennett, P.N., Chickering, D.M., Dumais, S.T.: Here or there preference judgments for relevance. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 16–27. Springer, Heidelberg (2008). Scholar
  11. 11.
    di Sciascio, C., Brusilovsky, P., Veas, E.: A study on user-controllable social exploratory search. In: 23rd International Conference on Intelligent User Interfaces. ACM (2018)Google Scholar
  12. 12.
    di Sciascio, C., Sabol, V., Veas, E.E.: Rank as you go: user-driven exploration of search results. In: Proceedings of the 21st International Conference on Intelligent User Interfaces, pp. 118–129. ACM (2016)Google Scholar
  13. 13.
    Dinet, J., Favart, M., Passerault, J.-M.: Searching for information in an online public access catalogue (OPAC): the impacts of information search expertise on the use of boolean operators. J. Comput. Assist. Learn. 20(5), 338–346 (2004)CrossRefGoogle Scholar
  14. 14.
    Fast, E., Chen, B., Bernstein, M.S.: Empath: understanding topic signals in large-scale text. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 4647–4657. ACM (2016)Google Scholar
  15. 15.
    Gratzl, S., Lex, A., Gehlenborg, N., Pfister, H., Streit, M.: LineUp: visual analysis of multi-attribute rankings. IEEE Trans. Vis. Comput. Graph. 19(12), 2277–2286 (2013)CrossRefGoogle Scholar
  16. 16.
    Gretarsson, B., et al.: TopicNets: visual analysis of large text corpora with topic modeling. ACM Trans. Intell. Syst. Technol. (TIST) 3(2), 23 (2012)CrossRefGoogle Scholar
  17. 17.
    Hearst, M.A.: TileBars: visualization of term distribution information in full text information access. In: CHI, vol. 95, pp. 59–66 (1995)Google Scholar
  18. 18.
    Hu, Y., Boyd-Graber, J., Satinoff, B., Smith, A.: Interactive topic modeling. Mach. Learn. 95(3), 423–469 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Klouche, K., Ruotsalo, T., Cabral, D., Andolina, S., Bellucci, A., Jacucci, G.: Designing for exploratory search on touch devices. In: 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 4189–4198. ACM (2015)Google Scholar
  20. 20.
    Liu, S., Zhou, M.X., Pan, S., Qian, W., Cai, W., Lian, X.: Interactive, topic-based visual text summarization and analysis. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, pp. 543–552. ACM (2009)Google Scholar
  21. 21.
    Marchionini, G.: Exploratory search: from finding to understanding. Commun. ACM 49(4), 41–46 (2006)CrossRefGoogle Scholar
  22. 22.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)Google Scholar
  23. 23.
    Peltonen, J., Belorustceva, K., Ruotsalo, T.: Topic-relevance map: visualization for improving search result comprehension. In: Proceedings of the 22nd International Conference on Intelligent User Interfaces, pp. 611–622. ACM (2017)Google Scholar
  24. 24.
    Pirolli, P., Card, C.: The sensemaking process and leverage points for analyst technology as identified through cognitive task analysis. In: Proceedings of International Conference on Intelligence Analysis, pp. 2–4 (2005)Google Scholar
  25. 25.
    Sauro, J., Lewis, J.R.: Standardized usability questionnaires. In: Quantifying the User Experience, pp. 185–240 (2012)CrossRefGoogle Scholar
  26. 26.
    Sultanum, N., Singh, D., Brudno, M., Chevalier, F.: Doccurate: a curation-based approach for clinical text visualization. IEEE Trans. Vis. Comput. Graph. 25(1), 142–151 (2019)CrossRefGoogle Scholar
  27. 27.
    Sun, C., Rampalli, N., Yang, F., Doan, A.: Chimera: large-scale classification using machine learning, rules, and crowdsourcing. Proc. VLDB Endowment 7(13), 1529–1540 (2014)CrossRefGoogle Scholar
  28. 28.
    Tabebordbar, A., Beheshti, A.: Adaptive rule monitoring system. In: Proceedings of the 1st International Workshop on Software Engineering for Cognitive Services, SE4COG@ICSE 2018, Gothenburg, Sweden, 28–29 May 2018, pp. 45–51 (2018)Google Scholar
  29. 29.
    Wall, E., Das, S., Chawla, R., Kalidindi, B., Brown, E.T., Endert, A.: Podium: ranking data using mixed-initiative visual analytics. IEEE Trans. Vis. Comput. Graph. 24(1), 288–297 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alireza Tabebordbar
    • 1
    Email author
  • Amin Beheshti
    • 2
  • Boualem Benatallah
    • 1
  1. 1.University of New South WalesSydneyAustralia
  2. 2.Macquarie UniversitySydneyAustralia

Personalised recommendations