Advertisement

Parameter-Free Structural Diversity Search

  • Jinbin HuangEmail author
  • Xin Huang
  • Yuanyuan Zhu
  • Jianliang Xu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11881)

Abstract

The problem of structural diversity search is to find the top-k vertices with the largest structural diversity in a graph. However, when identifying distinct social contexts, existing structural diversity models (e.g., t-sized component, t-core, and t-brace) are sensitive to an input parameter of t. To address this drawback, we propose a parameter-free structural diversity model. Specifically, we propose a novel notation of \(\mathsf {discriminative}\) \(\mathsf {core}\), which automatically models various kinds of social contexts without parameter t. Leveraging on \(\mathsf {discriminative}\) \(\mathsf {cores}\) and h-index, the structural diversity score for a vertex is calculated. We study the problem of parameter-free structural diversity search in this paper. An efficient top-k search algorithm with a well-designed upper bound for pruning is proposed. Extensive experiment results demonstrate the parameter sensitivity of existing t-core based model and verify the superiority of our methods.

Notes

Acknowledgments

This work is supported by the NSFC Nos. 61702435, 61972291, RGC Nos. 12200917, 12200817, CRF C6030-18GF, and the National Science Foundation of Hubei Province No. 2018CFB519.

References

  1. 1.
    Aridhi, S., Brugnara, M., Montresor, A., Velegrakis, Y.: Distributed k-core decomposition and maintenance in large dynamic graphs. In: DEBS, pp. 161–168. ACM (2016)Google Scholar
  2. 2.
    Batagelj, V., Zaversnik, M.: An o (m) algorithm for cores decomposition of networks. arXiv preprint cs/0310049 (2003)Google Scholar
  3. 3.
    Bonchi, F., Gullo, F., Kaltenbrunner, A., Volkovich, Y.: Core decomposition of uncertain graphs. In: KDD, pp. 1316–1325. ACM (2014)Google Scholar
  4. 4.
    Chang, L., Zhang, C., Lin, X., Qin, L.: Scalable top-k structural diversity search. In: ICDE, pp. 95–98 (2017)Google Scholar
  5. 5.
    Cheng, H., Zhong, M., Wang, J., Qian, T.: Keyword search based mashup construction with guaranteed diversity. In: Hartmann, S., Küng, J., Chakravarthy, S., Anderst-Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DEXA 2019. LNCS, vol. 11707, pp. 423–433. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-27618-8_31CrossRefGoogle Scholar
  6. 6.
    Cheng, J., Ke, Y., Chu, S., Özsu, M.T.: Efficient core decomposition in massive networks. In: ICDE, pp. 51–62 (2011)Google Scholar
  7. 7.
    Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J. Comput. 14(1), 210–223 (1985)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ding, F., Zhuang, Y.: Ego-network probabilistic graphical model for discovering on-line communities. Appl. Intell. 48(9), 3038–3052 (2018)CrossRefGoogle Scholar
  9. 9.
    Galimberti, E., Bonchi, F., Gullo, F.: Core decomposition and densest subgraph in multilayer networks. In: CIKM, pp. 1807–1816. ACM (2017)Google Scholar
  10. 10.
    Goyal, A., Lu, W., Lakshmanan, L.V.S.: CELF++: optimizing the greedy algorithm for influence maximization in social networks. In: WWW, pp. 47–48 (2011)Google Scholar
  11. 11.
    Hirsch, J.E.: An index to quantify an individual’s scientific research output. Proc. Nat. Acad. Sci. 102(46), 16569–16572 (2005)CrossRefGoogle Scholar
  12. 12.
    Huang, X., Cheng, H., Li, R., Qin, L., Yu, J.X.: Top-k structural diversity search in large networks. VLDB J. 24(3), 319–343 (2015)CrossRefGoogle Scholar
  13. 13.
    Huang, X., Cheng, H., Li, R.-H., Qin, L., Yu, J.X.: Top-k structural diversity search in large networks. PVLDB 6(13), 1618–1629 (2013)Google Scholar
  14. 14.
    Huang, X., Lakshmanan, L.V., Xu, J.: Community Search over Big Graphs. Morgan & Claypool Publishers, San Rafael (2019)CrossRefGoogle Scholar
  15. 15.
    Huckfeldt, R.R., Sprague, J.: Citizens, Politics and Social Communication: Information and Influence in an Election Campaign. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  16. 16.
    Jakma, P., Orczyk, M., Perkins, C.S., Fayed, M.: Distributed k-core decomposition of dynamic graphs. In: StudentWorkshop@CoNEXT, pp. 39–40. ACM (2012)Google Scholar
  17. 17.
    Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence through a social network. In: KDD, pp. 137–146 (2003)Google Scholar
  18. 18.
    Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection, June 2014. http://snap.stanford.edu/data
  19. 19.
    Levorato, V.: Core decomposition in directed networks: kernelization and strong connectivity. In: Contucci, P., Menezes, R., Omicini, A., Poncela-Casasnovas, J. (eds.) Complex Networks V. SCI, vol. 549, pp. 129–140. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-05401-8_13CrossRefGoogle Scholar
  20. 20.
    Li, R., Yu, J.X., Mao, R.: Efficient core maintenance in large dynamic graphs. In: TKDE, vol. 26, no. 10, pp. 2453–2465 (2014)CrossRefGoogle Scholar
  21. 21.
    Mcauley, J., Leskovec, J.: Discovering social circles in ego networks. TKDD 8(1), 4 (2014)CrossRefGoogle Scholar
  22. 22.
    Montresor, A., Pellegrini, F.D., Miorandi, D.: Distributed k-core decomposition. TPDS 24(2), 288–300 (2013)Google Scholar
  23. 23.
    Sarıyüce, A.E., Gedik, B., Jacques-Silva, G., Wu, K.-L., Çatalyürek, Ü.V.: Streaming algorithms for k-core decomposition. PVLDB 6(6), 433–444 (2013)Google Scholar
  24. 24.
    Tang, Y., Shi, Y., Xiao, X.: Influence maximization in near-linear time: a martingale approach. In: SIGMOD Conference, pp. 1539–1554. ACM (2015)Google Scholar
  25. 25.
    Ugander, J., Backstrom, L., Marlow, C., Kleinberg, J.: Structural diversity in social contagion. PNAS 109(16), 5962–5966 (2012)CrossRefGoogle Scholar
  26. 26.
    Wen, D., Qin, L., Zhang, Y., Lin, X., Yu, J.X.: I/O efficient core graph decomposition: application to degeneracy ordering. TKDE 31(1), 75–90 (2019)Google Scholar
  27. 27.
    Wu, H., et al.: Core decomposition in large temporal graphs. In: BigData, pp. 649–658 (2015)Google Scholar
  28. 28.
    Zhang, Y., Yu, J.X., Zhang, Y., Qin, L.: A fast order-based approach for core maintenance. In: ICDE, pp. 337–348 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jinbin Huang
    • 1
    Email author
  • Xin Huang
    • 1
  • Yuanyuan Zhu
    • 2
  • Jianliang Xu
    • 1
  1. 1.Hong Kong Baptist UniversityKowloon TongHong Kong
  2. 2.Wuhan UniversityWuhanChina

Personalised recommendations