Handling Disagreement in Ontologies-Based Reasoning via Argumentation

  • Said Jabbour
  • Yue Ma
  • Badran RaddaouiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11881)


Ontologies are at the heart of the Semantic Web technologies. This paper introduces a framework for reasoning under uncertainty in the context of ontologies represented in description logics; these ontologies could be inconsistent or incoherent. Conflicts are addressed through a form of logic-based argumentation. We examine how the number of attacks and the weights of arguments can be used to define various labelling functions that identify the justification statuses of arguments. Then, different inference relations are distinguished to obtain meaningful answers to queries from imperfect ontologies without extra computational costs compared to classical DL reasoning. Lastly, we study the properties of these new entailment relations and their relationships with other well-known existing ones.


Semantic Web Ontologies Argumentation Uncertainty 


  1. 1.
    Amgoud, L., Prade, H.: Reaching agreement through argumentation: a possibilistic approach. In: KR, pp. 175–182 (2004)Google Scholar
  2. 2.
    Arif, M.F., Mencía, C., Ignatiev, A., Manthey, N., Peñaloza, R., Marques-Silva, J.: BEACON: an efficient sat-based tool for debugging EL\(^{\hat{}}\)+ ontologies. In: SAT, pp. 521–530 (2016)Google Scholar
  3. 3.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook: Theory, Implementation and Applications (2010)Google Scholar
  4. 4.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications, 2nd edn. Cambridge University Press, Cambridge (2010)zbMATHGoogle Scholar
  5. 5.
    Baget, J., et al.: A general modifier-based framework for inconsistency-tolerant query answering. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Fifteenth International Conference, KR 2016, pp. 513–516 (2016)Google Scholar
  6. 6.
    Bail, S., Glimm, B., Jiménez-Ruiz, E., Matentzoglu, N., Parsia, B., Steigmiller, A. (eds.): Informal Proceedings of the 3rd International Workshop on OWL Reasoner Evaluation, CEUR Workshop, vol. 1207 (2014)Google Scholar
  7. 7.
    Baumann, R.: Characterizing equivalence notions for labelling-based semantics. In: KR, pp. 22–32 (2016)Google Scholar
  8. 8.
    Benferhat, S., Bouraoui, Z., Croitoru, M., Papini, O., Tabia, K.: Non-objection inference for inconsistency-tolerant query answering. In: IJCAI, pp. 3684–3690 (2016)Google Scholar
  9. 9.
    Benferhat, S., Bouraoui, Z., Tabia, K.: How to select one preferred assertional-based repair from inconsistent and prioritized DL-Lite knowledge bases? In: IJCAI, pp. 1450–1456 (2015)Google Scholar
  10. 10.
    Benferhat, S., Dubois, D., Prade, H.: Argumentative inference in uncertain and inconsistent knowledge bases. In: UAI, pp. 411–419 (1993)Google Scholar
  11. 11.
    Besnard, P., Grégoire, É., Raddaoui, B.: A conditional logic-based argumentation framework. In: SUM, pp. 44–56 (2013)Google Scholar
  12. 12.
    Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artif. Intell. 128(1–2), 203–235 (2001)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Besnard, P., Hunter, A.: Elements of Argumentation. MIT Press, Cambridge (2008)CrossRefGoogle Scholar
  14. 14.
    Bienvenu, M.: On the complexity of consistent query answering in the presence of simple ontologies. In AAAI, AAAI Press (2012)Google Scholar
  15. 15.
    Bienvenu, M.: Inconsistency-tolerant ontology-based data access revisited: taking mappings into account. In: IJCAI, pp. 1721–1729 (2018).
  16. 16.
    Bienvenu, M., Bourgaux, C., Goasdoué, F.: Computing and explaining query answers over inconsistent DL-Lite knowledge bases. J. Artif. Intell. Res. 64, 563–644 (2019)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Bourgaux, C.: Inconsistency Handling in Ontology-Mediated Query Answering. PhD thesis, Université Paris Saclay (2016)Google Scholar
  18. 18.
    Bouzeghoub, A., Jabbour, S., Ma, Y., Raddaoui, B.: Handling conflicts in uncertain ontologies using deductive argumentation. In: Proceedings of IEEE/WIC 2017, pp. 65–72 (2017Google Scholar
  19. 19.
    Deagustini, C.A.D., Martinez, M.V., Falappa, M.A., Simari, G.R.: How does incoherence affect inconsistency-tolerant semantics for datalog\(\pm \)? Ann. Math. Artif. Intell. 82(1–3), 43–68 (2018)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In: Handbook of Logic in Artificial Intelligence and Logic Programming, pp. 439–513 (1994)Google Scholar
  21. 21.
    Dubois, D., Prade, H.: A possibilistic analysis of inconsistency. In: International Conference on Scalable Uncertainty Management, pp. 347–353 (2015)Google Scholar
  22. 22.
    Flouris, G., Huang, Z., Pan, J.Z., Plexousakis, D., Wache, H.: Inconsistencies, negations and changes in ontologies. In: AAAI, pp. 1295–1300 (2006)Google Scholar
  23. 23.
    Gómez, S.A., Chesñevar, C.I., Simari, G.R.: ONTOarg: a decision support framework for ontology integration based on argumentation. Expert Syst. Appl. 40(5), 1858–1870 (2013)CrossRefGoogle Scholar
  24. 24.
    Gorogiannis, N., Hunter, A.: Instantiating abstract argumentation with classical logic arguments: postulates and properties. Artif. Intell. 175(9–10), 1479–1497 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Grossi, D., Modgil, S.: On the graded acceptability of arguments. In: IJCAI, pp. 868–874 (2015)Google Scholar
  26. 26.
    Huang, Z., van Harmelen, F., Ten Teije, A.: Reasoning with inconsistent ontologies. In: IJCAI, pp. 454–459 (2005)Google Scholar
  27. 27.
    Hunter, A.: Towards higher impact argumentation. In: AAAI, pp. 275–280 (2004)Google Scholar
  28. 28.
    Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL DL entailments. In: ISWC, pp. 267–280 (2007)CrossRefGoogle Scholar
  29. 29.
    Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant query answering in ontology-based data access. J. Web Semant. 33, 3–29 (2015)CrossRefGoogle Scholar
  30. 30.
    Liu, B., Li, J., Zhao, Y.: Repairing and reasoning with inconsistent and uncertain ontologies. Adv. Eng. Softw. 45(1), 380–390 (2012)CrossRefGoogle Scholar
  31. 31.
    Ludwig, M.: Just: a tool for computing justifications w.r.t. ELH ontologies. In: OWL/VSL, pp. 1–7 (2014)Google Scholar
  32. 32.
    Lukasiewicz, T.: Expressive probabilistic description logics. Artif. Intell. 172(6–7), 852–883 (2008)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Lukasiewicz, T., Martinez, M.V., Pieris, A., Simari, G.I.: From classical to consistent query answering under existential rules. In: AAAI, pp. 1546–1552. AAAI Press (2015)Google Scholar
  34. 34.
    Qi, G., Ji, Q., Pan, J.Z., Du, J.: Extending description logics with uncertainty reasoning in possibilistic logic. Int. J. Intell. Syst. 26(4), 353–381 (2011)CrossRefGoogle Scholar
  35. 35.
    Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Reasoning with probabilistic ontologies. In: IJCAI, pp. 4310–4316 (2015)Google Scholar
  36. 36.
    Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description logic terminologies. In: IJCAI, pp. 355–362 (2003)Google Scholar
  37. 37.
    Shakarian, P., et al.: Belief revision in structured probabilistic argumentation - model and application to cyber security. Ann. Math. Artif. Intell. 78(3–4), 259–301 (2016)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Simari, G.R., Loui, R.P.: A mathematical treatment of defeasible reasoning and its implementation. Artif. Intell. 53(2–3), 125–157 (1992)MathSciNetCrossRefGoogle Scholar
  39. 39.
    W3C. OWL 2 Web Ontology Language.
  40. 40.
    Wan, H., Zhang, H., Xiao, P., Huang, H., Zhang, Y.: Query answering with inconsistent existential rules under stable model semantics. In: AAAI, pp. 1095–1101 (2016Google Scholar
  41. 41.
    Williams, M., Hunter, A.: Harnessing ontologies for argument-based decision-making in breast cancer. In: ICTAI, pp. 254–261 (2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CRIL-CNRS, Université d’ArtoisLensFrance
  2. 2.LRI, Univ. Paris-Sud, CNRS University Paris-SaclaySaint-AubinFrance
  3. 3.SAMOVAR, CNRS, Télécom SudParis, Institut Polytechnique de ParisÉvryFrance

Personalised recommendations