Characterization of the Mechanical Properties of Sensitive Clay by Means of Indentation Tests

  • Vincenzo SilvestriEmail author
  • Claudette Tabib
Conference paper
Part of the Sustainable Civil Infrastructures book series (SUCI)


Instrumented indentation tests were carried out on specimens of undisturbed clay, using various indenters at a constant rate of penetration of 0.5 mm/min. These tests were performed with 20-mm in diameter conical indenters with apical angles of 60o, 80o, 97o, and 144.3o, as well as with a Vickers indenter of semi-apical angle of 68.7o. Such tests allowed the determination of both the undrained shear strength and the deformation modulus of the clay. The undrained shear strength was found by assuming that a fully plastic stress field resulted from indenter penetration and by using slip-line theory. The deformation modulus was computed by assuming that the clay behaved elastically during initial penetration. The theory proposed by Love (1939) and later extended by Sneddon (1948, 1965) was used to obtain values of Young’s modulus. The expanding cavity model or ECM proposed by Johnson (1970, 1985) was also employed for the interpretation of test results obtained with both sharp and blunt indenters.

One of the most significant findings of the present study is that the structure of the undisturbed clay suffers severe and progressive breakdown with increasing penetration during indentation, which results in a dramatic decrease of the strength and deformation parameters of the clay. Comparison between the undrained shear strength deduced from the quasi-static indentation tests and the dynamic Swedish fall-cone tests, also indicates that Su obtained from the latter tests are much higher than the corresponding data derived from the indentation tests. It is believed that the possible cause of the overestimation of the undrained shear strength deduced from the Swedish fall-cone tests is related to the very high strain rate experienced by the falling cone.

The paper also presents a brief review of the most pertinent theories that are used for the interpretation of indentation tests.


Indentation tests Conical and pyramidal indenters Sensitive clay Young’s modulus Undrained shear strength Comparisons 


  1. American Society for Testing and Materials-ASTM: Standard practice for instrumented indentation testing, E2546-15. ASTM International, pp. 1–24 (2007)Google Scholar
  2. American Society for Testing and Materials-ASTM: Instrumented indentation testing: a Draft ASTM Practice. ASTM International. Standardization News, October 2003Google Scholar
  3. Atkins, A.G., Tabor, D.: Plastic indentation in metals with cones. J. Mech. Phys. Solids 13(3), 149–164 (1965)CrossRefGoogle Scholar
  4. Barquins, M., Maugis, D.: Adhesive contact of axisymmetric punches on an elastic half space: the modified Hertz-Huber’s stress tensor for contacting spheres. Journal de Mécanique Théorique et Appliquée 1(2), 331–357 (1982)Google Scholar
  5. Battacharya, A.K., Nix, W.D.: Finite element simulation of indentation experiments. Int. J. Solids Struct. 24(12), 141–147 (1988)Google Scholar
  6. Bishop, R.F., Hill, R., Moh, N.F.: The theory of indentation and hardness tests. Proc. Phys. Soc. 57(3), 147–159 (1945)CrossRefGoogle Scholar
  7. Boussinesq, J.: Application des potentiels à l’étude de l’équilibre et du mouvement des solides élastiques: des notes étendues sur divers points de physique mathématique et d’analyse. Gauthier-Villars, Paris, 736 p. (1985)Google Scholar
  8. Cerruti, V.: Ricerche intorno all’equilibrio dei corpi elastici isotropi. Atti Accad. Naz. Lincei Memorie Serie III XII, 81–123 (1882)Google Scholar
  9. Cheng, Y.-T., Li, Z.: Hardness obtained from conical indentations with various cone angles. J. Mater. Res. 15(12), 2830–2855 (2000)CrossRefGoogle Scholar
  10. Chitkara, N.R., Butt, M.A.: Numerical construction of axisymmetric slip-line fields for indentation of thick blocks by rigid conical indenters and friction at the tool-metal interface. Int. J. Mech. Sci. 34(11), 849–862 (1992)CrossRefGoogle Scholar
  11. Dugdale, D.S.: Cone indentation experiments. J. Mech. Phys. Solids 2(4), 265–277 (1954)CrossRefGoogle Scholar
  12. Dugdale, D.S.: Wedge indentation experiments with cold-worked metals. J. Mech. Phys. Solids 2(1), 14–26 (1953)CrossRefGoogle Scholar
  13. Ewane, M.-S.: Essais d’indentation sur un sol de la mer Champlain. Ph.D. thesis. École Polytechnique de Montréal, Montréal, Québec, Canada (2018)Google Scholar
  14. Ewane, M.S., Silvestri, V., James, M.: Indentation of a sensitive clay by a flat-ended circular punch. J. Geotech. Geoenviron. Eng. (2018).
  15. Fischer-Cripps, A.C.: Introduction to Contact Mechanics, 2nd edn. Springer, New York (2007)CrossRefGoogle Scholar
  16. Fischer-Cripps, A.C.: Nanoindentation. Springer, New York (2002)CrossRefGoogle Scholar
  17. Giannakopoulos, A.E., Larsson, P.L., Vestergaard, R.: Analysis of Vickers indentation. Int. J. Solids Struct. 31(19), 2679–2708 (1994)CrossRefGoogle Scholar
  18. Guha, S., Sangal, S., Basu, S.: Numerical investigations of flat punch molding using a higher order strain gradient plasticity theory. Int. J. Mater. Form. 7(4), 459–467 (2014)CrossRefGoogle Scholar
  19. Hainsworth, S.V., Chandler, H.W., Page, T.F.: Analysis of nanoindentation load displacement loading curves. J. Mater. Res. 11, 1987–1995 (1996)CrossRefGoogle Scholar
  20. Hill, R.: The Mathematical Theory of Plasticity. Oxford University Press, London (1950)Google Scholar
  21. Hill, R., Lee, E.H., Tupper, S.J.: The theory of wedge indentation of ductile materials. Proc. R. Soc. Lond. A 188 (1947).
  22. Hirst, W., Howse, M.G.J.W.: The indentation of materials by wedges. Proc. R. Soc. Lond. A 311 (1969).
  23. Houlsby, G.T., Wroth, C.P.: Direct solution of plasticity problems in soils by the method of characteristics. In: Proceedings of the 4th International Conference on Numerical Methods in Geomechanics, Edmonton, vol. 3, pp. 1059–1071 (1982)Google Scholar
  24. Hu, Z., Lynne, K., Delfanian, F.: Characterization of materials’ elasticity and yield strength through micro/nano-indentation testing with a cylindrical flat-tip indenter. J. Mater. Res. 30(04), 578–591 (2015)CrossRefGoogle Scholar
  25. International Organization for Standardization-ISO: Test method for metallic and non-metallic coatings, 14577-4 (2007)Google Scholar
  26. International Organization for Standardization-ISO: Instrumented indentation test for hardness and materials parameters, 14577-1 (2002)Google Scholar
  27. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)CrossRefGoogle Scholar
  28. Johnson, K.L.: The correlation of indentation experiments. J. Mech. Phys. Solids 18(2), 115–126 (1970)CrossRefGoogle Scholar
  29. Leroueil, S., Tavenas, F., Le Bihan, J.-P.L.: Propriétés caractéristiques des argiles de l’est du Canada. Can. Geotech. J. 20(4), 681–705 (1983)CrossRefGoogle Scholar
  30. Lockett, F.J.: Indentation of a rigid-plastic material by a conical indenter. J. Mech. Phys. Solids 11(5), 345–355 (1963)CrossRefGoogle Scholar
  31. Love, A.E.H.: Boussinesq’s problem for a rigid cone. Q. J. Math. 10(1), 161–175 (1939)CrossRefGoogle Scholar
  32. Marsh, D.: Plastic flow in glass. Proc. R. Soc. Lond. A 279(1378), 420–435 (1964)CrossRefGoogle Scholar
  33. Meyer, E.: Untersuchungen über Härteprüfung und Härte Brinell Methoden. Z. Ver. deut. Ing. 52, 66–74 (1908)Google Scholar
  34. Mulhearn, T.: The deformation of metals by Vickers-type pyramidal indenters. J. Mech. Phys. Solids 7(2), 85–88 (1959)CrossRefGoogle Scholar
  35. Prandtl, L.: Über die Härte plastischer Körper. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, pp. 74–85 (1920)Google Scholar
  36. Riccardi, B., Montanari, R.: Indentation of metals by a flat-ended cylindrical punch. Mater. Sci. Eng. A 381, 281–291 (2004)CrossRefGoogle Scholar
  37. Samuels, L., Mulhearn, T.: An experimental investigation of the deformed zone associated with indentation hardness impressions. J. Mech. Phys. Solids 5(2), 125–134 (1957)CrossRefGoogle Scholar
  38. Shield, R.T.: On the plastic flow of metals under conditions of axial symmetry. Proc. R. Soc. Lond. A 233(1193), 267–287 (1955)CrossRefGoogle Scholar
  39. Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3(1), 47–57 (1965)CrossRefGoogle Scholar
  40. Sneddon, I.N.: Boussinesq problem for rigid cone. Math. Proc. 44(4), 492–507 (1948)CrossRefGoogle Scholar
  41. Tabor, D.: The Hardness of Metals. Oxford University Press, London (1951)Google Scholar
  42. Wang, Z., Basu, S., Murthy, T.G., Saldana, C.: Modified expansion theory formulation for circular indentation and experimental validation. Int. J. Solids Struct. 97–98, 129–136 (2016)CrossRefGoogle Scholar
  43. Yu, W., Blanchard, J.P.: An elastic-plastic indentation model and its solutions. J. Mater. Res. 11(9), 2358–2367 (1996)CrossRefGoogle Scholar
  44. Zeng, K., Chiu, C.H.: An analysis of load-penetration curves from instrumented indentation. Acta Mater. 49(17), 3539–3551 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.École PolytechniqueMontrealCanada
  2. 2.MontrealCanada

Personalised recommendations