Advertisement

Mechanical Characterization of the Adobe Material of the Archaeological Site of Chellah

  • S. SimouEmail author
  • K. Baba
  • N. Akkouri
  • M. Lamrani
  • M. Tajayout
  • A. Nounah
Conference paper
Part of the Sustainable Civil Infrastructures book series (SUCI)

Abstract

Monuments and historical remains built of raw earth show that this material can persist for centuries. As with the cultural and historical heritage of the city of Rabat (Morocco), Chellah is one of the most historically significant monuments, this site being the melting pot of several civilizations that have played a major role, including the Marinid who left traces of Islamic architecture through the Medersa site built by the adobe construction technique.

This research involves the experimental and numerical analysis of the adobe material obtained from the Chellah site as well as the additive mixture in order to identify their mechanical behaviour. After the geotechnical identification of the material, a series of mechanical tests (compressive and bending tensile strengths) were applied to the adobe and the additive mixture. For numerical simulation, the finite element method was used to simulate the failure process of the material and different mixtures using the ANSYS software (ANSYS, 2019 1R). Numerical predictions are compared with experimental data. The methodology applied in this study provides promising results to better predict the mechanical properties of the mix used on the construction and rehabilitation of historic monuments in order to further reduce costly experimental tasks.

Keywords

Historical monument Building materials Adobe Mechanical behaviour Wood shaving 

References

  1. Alavéz-Ramírez, R., Montes-García, P., Martínez-Reyes, J., et al.: The use of sugarcane bagasse ash and lime to improve the durability and mechanical properties of compacted soil blocks. Constr. Build. Mater. 34, 296–305 (2012).  https://doi.org/10.1016/j.conbuildmat.2012.02.072CrossRefGoogle Scholar
  2. Bui, T.T., Limam, A., Sarhosis, V., Hjiaj, M.: Discrete element modelling of the in-plane and out-of-plane behaviour of dry-joint masonry wall constructions. Eng. Struct. 136, 277–294 (2017).  https://doi.org/10.1016/j.engstruct.2017.01.020CrossRefGoogle Scholar
  3. Calatan, G., Hegyi, A., Dico, C., Mircea, C.: Determining the optimum addition of vegetable materials in adobe bricks. Procedia Technol. 22, 259–265 (2016).  https://doi.org/10.1016/j.protcy.2016.01.077CrossRefGoogle Scholar
  4. Cao, Z., Watanabe, H.: Earthquake response predication and retrofitting techniques of adobe structures, no. 12 (2004)Google Scholar
  5. CRATerre: Construire en Terre normes CRAterre (1979)Google Scholar
  6. CRATerre: Réhabilitation et valorisation du bâti en pisé (2018)Google Scholar
  7. Daudon, D., Sieffert, Y., Albarracín, O., et al.: Adobe construction modeling by discrete element method: first methodological steps. Procedia Econ. Finan. 18, 247–254 (2014).  https://doi.org/10.1016/S2212-5671(14)00937-XCrossRefGoogle Scholar
  8. EN 196-1: Methods of testing cement - Part 1: determination of strength (2016). https://standards.cen.eu. Accessed 26 June 2019
  9. EN 772-1:2011+A1: Methods of test for masonry units - Part 1: determination of compressive strength (2015)Google Scholar
  10. Ghavami, K., Toledo Filho, R.D., Barbosa, N.P.: Behaviour of composite soil reinforced with natural fibres. Cement Concr. Compos. 21, 39–48 (1999).  https://doi.org/10.1016/S0958-9465(98)00033-XCrossRefGoogle Scholar
  11. González-López, J.R., Juárez-Alvarado, C.A., Ayub-Francis, B., Mendoza-Rangel, J.M.: Compaction effect on the compressive strength and durability of stabilized earth blocks. Constr. Build. Mater. 163, 179–188 (2018).  https://doi.org/10.1016/j.conbuildmat.2017.12.074CrossRefGoogle Scholar
  12. Illampas, R., Charmpis, D.C., Ioannou, I.: Laboratory testing and finite element simulation of the structural response of an adobe masonry building under horizontal loading. Eng. Struct. 80, 362–376 (2014).  https://doi.org/10.1016/j.engstruct.2014.09.008CrossRefGoogle Scholar
  13. Koohestani, B., Koubaa, A., Belem, T., et al.: Experimental investigation of mechanical and microstructural properties of cemented paste backfill containing maple-wood filler. Constr. Build. Mater. 121, 222–228 (2016).  https://doi.org/10.1016/j.conbuildmat.2016.05.118CrossRefGoogle Scholar
  14. Mohebkhah, A., Chegeni, B.: Local–global interactive buckling of built-up I-beam sections. Thin-Walled Struct. 56, 33–37 (2012).  https://doi.org/10.1016/j.tws.2012.03.018CrossRefGoogle Scholar
  15. Onuaguluchi, O., Banthia, N.: Plant-based natural fibre reinforced cement composites: a review. Cement Concr. Compos. 68, 96–108 (2016).  https://doi.org/10.1016/j.cemconcomp.2016.02.014CrossRefGoogle Scholar
  16. Quốc-Bảo, B.: Stabilité des structures en pisé: Durabilité, caractéristiques mécaniques. Thèse, L’Institut National des Sciences Appliquees de Lyon (2008)Google Scholar
  17. RPCT: Decret n° 2-12-666 du reglement parasismique pour les constructions en terre et instituant le Comité national des constructions en terre (2013)Google Scholar
  18. Sharma, V., Marwaha, B.M., Vinayak, H.K.: Enhancing durability of adobe by natural reinforcement for propagating sustainable mud housing. Int. J. Sustain. Built Environ. 5, 141–155 (2016).  https://doi.org/10.1016/j.ijsbe.2016.03.004CrossRefGoogle Scholar
  19. Sharma, V., Vinayak, H.K., Marwaha, B.M.: Enhancing compressive strength of soil using natural fibers. Constr. Build. Mater. 93, 943–949 (2015).  https://doi.org/10.1016/j.conbuildmat.2015.05.065CrossRefGoogle Scholar
  20. Sudin, R., Swamy, N.: Bamboo and wood fibre cement composites for sustainable infrastructure regeneration. J. Mater. Sci. 41, 6917–6924 (2006).  https://doi.org/10.1007/s10853-006-0224-3CrossRefGoogle Scholar
  21. Taj, S., Munawar, M.A.: Natural fiber-reinforced polymer composite, no. 17 (2007)Google Scholar
  22. Tarque, N., Camata, G., Espacone, E., et al.: Numerical modelling of in-plane behaviour of adobe walls, no. 12 (2010)Google Scholar
  23. Terrisse, M.: Les musées de sites archéologiques appréhendés en tant que vecteurs de développement local à travers trois études de cas préfigurant la mise en valeur opérationnelle du site de Chellah. Thèse, Université de Maine, le Mans (2011)Google Scholar
  24. Van Damme, H., Houben, H.: Earth concrete. Stabilization revisited. Cem. Concr. Res. 114, 90–102 (2018).  https://doi.org/10.1016/j.cemconres.2017.02.035CrossRefGoogle Scholar
  25. Varum, H., Costa, A., Pereira, H., et al.: Caracterização do comportamento estrutural de paredes de alvenaria de adobe, no. 10 (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • S. Simou
    • 1
    Email author
  • K. Baba
    • 2
  • N. Akkouri
    • 1
  • M. Lamrani
    • 2
  • M. Tajayout
    • 2
  • A. Nounah
    • 2
  1. 1.Civil Engineering and Environment Laboratory, High School of Technology, Sale, Civil Engineering, Water, Environment and Geosciences Centre (CICEEG), Mohammadia School of EngineeringMohammed V UniversityRabatMorocco
  2. 2.Civil Engineering and Environment Laboratory, High School of Technology, SaleMohammed V UniversityRabatMorocco

Personalised recommendations