Quantifying Effects of Urban Heat Islands: State of the Art

  • Ragaa Abd El-HakimEmail author
  • Sherif El-Badawy
Conference paper
Part of the Sustainable Civil Infrastructures book series (SUCI)


Recently, the world has been suffering from the distressing effects of one form of climate change, urban heat island (UHI). It means that urban and suburban areas’ air and surface temperatures are hotter than their nearby surrounding rural areas. Pavements and parking lots contributes to about 29% to 45% of the urban areas, and they contribute to the UHI phenomena. During the day, temperature of dark dry surfaces (such as pavements and parking lots) in direct sun can reach up to 88 °C while vegetated surfaces with moist soils might reach only 18 °C under the same conditions. The increase in temperature due to UHI leads to an increase in the peak energy demand using more air conditioners and raising the energy bills. It also leads to an increase in the levels of greenhouse gas emissions (global worming) and air pollution. Increased daytime temperatures, reduced nighttime cooling, and higher air pollution levels related to UHIs affects human health as they lead to general discomfort, respiratory difficulties, heat cramps, and exhaustion. UHI has great and direct effects on the environment, on people and on the human health, on energy consumption and on the economy, and on the pavement performance. The factors that affect the formation and intensity of UHI are versatile in nature. These factors vary between geographic location, time of day and season, synoptic weather, city size, city function and city form. The last two factors are the factors which can be controlled in order to mitigate UHI. Recent studies showed more interest in analyzing and quantifying the UHI phenomenon with more focus on the mitigation techniques. It is abundantly clear that there must be strategies to measure, model and control the phenomenon and achieve one of the Sustainable Development Goals, namely; sustainable cities and communities. The primary focus of this concise, yet comprehensive state of the art paper is to present the different technologies to mitigate the urban heat island. This study presented the different UHI definitions, causes, evaluation methods, and finally compared between the different mitigation techniques and set recommendations and guidelines based on a comprehensive literature review.


Albedo Absorptivity Emissivity UHI UBL UCL Cool pavements UHI mitigation Cool roofs Green buildings 


  1. 1.
    Un, D.: World Urbanization Prospects: The 2014 Revision. United Nations Department of Economics and Social Affairs, Population Division, New York (2015)Google Scholar
  2. 2.
    Gartland, L.M.: Heat Islands: Understanding and Mitigating Heat in Urban Areas. Routledge, London (2012)CrossRefGoogle Scholar
  3. 3.
    Oke, T.R.: Boundary Layer Climates. Routledge, London (2002)CrossRefGoogle Scholar
  4. 4.
    Asimakopoulos, D., et al.: Energy and climate in the urban built environment. M. Santamouris, University of Athens, Greece (2001). ISBN 1873936907Google Scholar
  5. 5.
    Oke, T.R.: The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 108(455), 1–24 (1982)Google Scholar
  6. 6.
    Oke, T.: The urban energy balance. Prog. Phys. Geogr. 12(4), 471–508 (1988)CrossRefGoogle Scholar
  7. 7.
    Arnfield, A.J.: Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 23(1), 1–26 (2003)CrossRefGoogle Scholar
  8. 8.
    Radhi, H., Sharples, S., Assem, E.: Impact of urban heat islands on the thermal comfort and cooling energy demand of artificial islands—A case study of AMWAJ Islands in Bahrain. Sustain. Cities Soc. 19, 310–318 (2015)CrossRefGoogle Scholar
  9. 9.
    Graves, H., et al.: Cooling Buildings in London: Overcoming the Heat Island. BREPress, Garston (2001)Google Scholar
  10. 10.
    Howard, L.: The Climate of London: Deduced From Meteorological Observations Made in the Metropolis and at Various Places Around It, vol. 2. E. Wilson, London (1833). Harvey and Darton, J. and A. Arch, Longman, Hatchard, S. Highley [and] R. HunterGoogle Scholar
  11. 11.
    Tan, J., et al.: The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeorol. 54(1), 75–84 (2010)CrossRefGoogle Scholar
  12. 12.
    Oke, T.R.: City size and the urban heat island. Atmos. Environ. (1967) 7(8), 769–779 (1973)Google Scholar
  13. 13.
    Katsoulis, B., Theoharatos, G.: Indications of the urban heat island in Athens, Greece. J. Clim. Appl. Meteorol. 24(12), 1296–1302 (1985)CrossRefGoogle Scholar
  14. 14.
    Balling Jr., R.C., Cerveny, R.S.: Long-term associations between wind speeds and the urban heat island of Phoenix, Arizona. J. Clim. Appl. Meteorol. 26(6), 712–716 (1987)CrossRefGoogle Scholar
  15. 15.
    Lee, D.O.: Urban warming?—an analysis of recent trends in London’s heat island. Weather 47(2), 50–56 (1992)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Saitoh, T., Shimada, T., Hoshi, H.: Modeling and simulation of the Tokyo urban heat island. Atmos. Environ. 30(20), 3431–3442 (1996)CrossRefGoogle Scholar
  17. 17.
    Yamashita, S.: Detailed structure of heat island phenomena from moving observations from electric tram-cars in metropolitan Tokyo. Atmos. Environ. 30(3), 429–435 (1996)CrossRefGoogle Scholar
  18. 18.
    Kim, Y.-H., Baik, J.-J.: Maximum urban heat island intensity in Seoul. J. Appl. Meteorol. 41(6), 651–659 (2002)CrossRefGoogle Scholar
  19. 19.
    Figuerola, P.I., Mazzeo, N.A.: Urban-rural temperature differences in Buenos Aires. Int. J. Climatol. 18(15), 1709–1723 (1998)CrossRefGoogle Scholar
  20. 20.
    Kłysik, K., Fortuniak, K.: Temporal and spatial characteristics of the urban heat island of Łódź, Poland. Atmos. Environ. 33(24), 3885–3895 (1999)CrossRefGoogle Scholar
  21. 21.
    Wilby, R.L.: Past and projected trends in London’s urban heat island. Weather 58(7), 251–260 (2003)CrossRefGoogle Scholar
  22. 22.
    Jin, H., Cui, P., Huang, M.: Investigation of urban microclimate parameters of city square in Harbin. In: Mediterranean Green Buildings & Renewable Energy, pp. 949–963. Springer (2017)Google Scholar
  23. 23.
    Aflaki, A., et al.: Urban heat island mitigation strategies: A state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong. Cities (2016)Google Scholar
  24. 24.
    Ichinose, T., Shimodozono, K., Hanaki, K.: Impact of anthropogenic heat on urban climate in Tokyo. Atmos. Environ. 33(24), 3897–3909 (1999)CrossRefGoogle Scholar
  25. 25.
    Streutker, D.R.: A remote sensing study of the urban heat island of Houston, Texas. Int. J. Remote Sens. 23(13), 2595–2608 (2002)CrossRefGoogle Scholar
  26. 26.
    Solecki, W.D., et al.: Mitigation of the heat island effect in urban New Jersey. Glob. Environ. Chang. Part B Environ. Hazards 6(1), 39–49 (2005)Google Scholar
  27. 27.
    Elsayed, I.S.: Mitigation of the urban heat island of the city of Kuala Lumpur, Malaysia. Middle East J. Sci. Res. 11(11), 1602–1613 (2012)Google Scholar
  28. 28.
    Oke, T., Hannell, F.: The form of the urban heat island in Hamilton, Canada, vol. 108. WMO Technical Note (1970)Google Scholar
  29. 29.
    Oke, T.: Urban climates and global environmental change. In: Thompson, R.D., Perry, A. (eds.) Applied Climatology: Principles & Practices, pp. 273–287. Routledge, New York (1997)Google Scholar
  30. 30.
    Park, H.-S.: Features of the heat island in Seoul and its surrounding cities. Atmos. Environ. (1967) 20(10), 1859–1866 (1986)Google Scholar
  31. 31.
    EPA: Compendium of Strategies Urban Heat Island Basics. Reducing Urban Heat Islands (2009).
  32. 32.
    Voogt, J.A., Oke, T.R.: Thermal remote sensing of urban climates. Remote Sens. Environ. 86(3), 370–384 (2003)CrossRefGoogle Scholar
  33. 33.
    Oke, T.R.: The distinction between canopy and boundary-layer urban heat islands. Atmosphere 14(4), 268–277 (1976)CrossRefGoogle Scholar
  34. 34.
    Voogt, J.: How researchers measure urban heat islands. In: United States Environmental Protection Agency (EPA), State and Local Climate and Energy Program, Heat Island Effect, Urban Heat Island Webcasts and Conference Calls (2007)Google Scholar
  35. 35.
    EPA: Measuring Heat Island. United States Environmental Protection Agency. Accessed 1 Jan 2017
  36. 36.
    Dwivedi, A., Khire, M.: Measurement technologies for urban heat islands. Int. J. Emerg. Technol. Adv. Eng. 4(10), 539–545 (2014)Google Scholar
  37. 37.
    Voogt, J.A., Oke, T.R.: Complete urban surface temperatures. J. Appl. Meteorol. 36, 1117–1131 (2011)CrossRefGoogle Scholar
  38. 38.
    Rao, P.: Remote sensing of urban heat islands from an environmental satellite. Amer Meteorological Soc 45 Beacon St, Boston, MA 02108–3693, p. 647 (1972)Google Scholar
  39. 39.
    Shen, H., et al.: Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data: a 26-year case study of the city of Wuhan in China. Remote Sens. Environ. 172, 109–125 (2016)CrossRefGoogle Scholar
  40. 40.
    Li, X., et al.: Remote sensing of the surface urban heat island and land architecture in Phoenix, Arizona: combined effects of land composition and configuration and cadastral–demographic–economic factors. Remote Sens. Environ. 174, 233–243 (2016)CrossRefGoogle Scholar
  41. 41.
    Coutts, A.M., et al.: Thermal infrared remote sensing of urban heat: hotspots, vegetation, and an assessment of techniques for use in urban planning. Remote Sens. Environ. 186, 637–651 (2016)CrossRefGoogle Scholar
  42. 42.
    Rotem-Mindali, O., et al.: The role of local land-use on the urban heat island effect of Tel Aviv as assessed from satellite remote sensing. Appl. Geogr. 56, 145–153 (2015)CrossRefGoogle Scholar
  43. 43.
    Hu, L., Brunsell, N.A.: A new perspective to assess the urban heat island through remotely sensed atmospheric profiles. Remote Sens. Environ. 158, 393–406 (2015)CrossRefGoogle Scholar
  44. 44.
    Wu, H., et al.: Assessing the effects of land use spatial structure on urban heat islands using HJ-1B remote sensing imagery in Wuhan, China. Int. J. Appl. Earth Obs. Geoinform. 32, 67–78 (2014)CrossRefGoogle Scholar
  45. 45.
    Imhoff, M.L., et al.: Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ. 114(3), 504–513 (2010)CrossRefGoogle Scholar
  46. 46.
    Tran, H., et al.: Assessment with satellite data of the urban heat island effects in Asian mega cities. Int. J. Appl. Earth Obs. Geoinform. 8(1), 34–48 (2006)CrossRefGoogle Scholar
  47. 47.
    Streutker, D.R.: Satellite-measured growth of the urban heat island of Houston, Texas. Remote Sens. Environ. 85(3), 282–289 (2003)CrossRefGoogle Scholar
  48. 48.
    Voogt, J.A.: Image representations of complete urban surface temperatures. Geocarto Int. 15(3), 21–32 (2000)CrossRefGoogle Scholar
  49. 49.
    Voogt, J.A., Oke, T.: Effects of urban surface geometry on remotely-sensed surface temperature. Int. J. Remote Sens. 19(5), 895–920 (1998)CrossRefGoogle Scholar
  50. 50.
    Nichol, J.: Visualisation of urban surface temperatures derived from satellite images. Int. J. Remote Sens. 19(9), 1639–1649 (1998)CrossRefGoogle Scholar
  51. 51.
    Lo, C.P., Quattrochi, D.A., Luvall, J.C.: Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect. Int. J. Remote Sens. 18(2), 287–304 (1997)CrossRefGoogle Scholar
  52. 52.
    Roth, M., Oke, T., Emery, W.: Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology. Int. J. Remote Sens. 10(11), 1699–1720 (1989)CrossRefGoogle Scholar
  53. 53.
    Kaloush, K.E.: Climate change impacts on pavement engineering. In: International Sustainable Pavements Workshop: Airlie Center, Warrenton, Virginia (2010)Google Scholar
  54. 54.
    Washington, DC. Nasa Earth Observatory, Images (2000). Accessed 8 July 2019.
  55. 55.
    Bergman, T.L., et al.: Fundamentals of Heat and Mass Transfer. Wiley, Hoboken (2011)Google Scholar
  56. 56.
    Geyer, M., Stine, W.B.: Power from the Sun (Powerfromthesun. net). JT Lyle Center (2001)Google Scholar
  57. 57.
    Kaloush, K.E., et al.: The thermal and radiative characteristics of concrete pavements in mitigating urban heat island effects (2008)Google Scholar
  58. 58.
    Gui, J., et al.: Impact of pavement thermophysical properties on surface temperatures. J. Mater. Civ. Eng. 19(8), 683–690 (2007)CrossRefGoogle Scholar
  59. 59.
    American Concrete Pavement Association: Albedo: a measure of pavement surface reflectance. Concr. Pavement Res. Technol. 3(05), 1–2 (2002)Google Scholar
  60. 60.
    Rosenfeld, A.H., et al.: Cool communities: strategies for heat island mitigation and smog reduction. Energy Build. 28(1), 51–62 (1998)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Taha, H.: Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energy Build. 25(2), 99–103 (1997)CrossRefGoogle Scholar
  62. 62.
    Levine, K.: Cool pavements research and technology (2011)Google Scholar
  63. 63.
    Pomerantz, M., et al.: The effects of pavements’ temperatures on air temperatures in large cities (2000)Google Scholar
  64. 64.
    Nichols (Nichols Consulting Engineers, C., CTL Group, Cool Pavements Study (Final), Prepared for: City of Chula Vista (2012)Google Scholar
  65. 65.
    Lin, J.D., et al.: The study of pavement surface temperature behavior of different permeable pavement materials during summer time. In: Advanced Materials Research. Trans Tech Publ. (2013)Google Scholar
  66. 66.
    Thermal emittance, in wikipedia (2016).
  67. 67.
    Golden, J.S., Kaloush, K.E.: Mesoscale and microscale evaluation of surface pavement impacts on the urban heat island effects. Int. J. Pavement Eng. 7(1), 37–52 (2006)CrossRefGoogle Scholar
  68. 68.
    Goss, D.J., Petrucci, R.H.: General Chemistry Principles & Modern Applications, Petrucci, Harwood, Herring, Madura: Study Guide. Pearson/Prentice Hall, Upper Saddle River (2007)Google Scholar
  69. 69.
    Mosca, G., Ruskell, T., Tipler, P.A.: Physics for Scientists and Engineers Study Guide, vol. 1. Macmillan, New York (2003)Google Scholar
  70. 70.
    Gui, J., et al.: Impact of pavement thickness on surface diurnal temperatures. J. Green Build. 2(2), 121–130 (2007)MathSciNetCrossRefGoogle Scholar
  71. 71.
    Herb, W., et al.: Simulation and characterization of asphalt pavement temperatures. Road Mater. Pavement Des. 10(1), 233–247 (2009)Google Scholar
  72. 72.
    Minhoto, M., et al.: Predicting asphalt pavement temperature with a three-dimensional finite element method. Transp. Res. Rec. J. Transp. Res. Board 1919, 96–110 (2005)CrossRefGoogle Scholar
  73. 73.
    Hermansson, Å.: Simulation model for calculating pavement temperatures including maximum temperature. Transp. Res. Rec. J. Transp. Res. Board 1699, 134–141 (2000)CrossRefGoogle Scholar
  74. 74.
    Qin, Y., Hiller, J.E.: Modeling temperature distribution in rigid pavement slabs: impact of air temperature. Constr. Build. Mater. 25(9), 3753–3761 (2011)CrossRefGoogle Scholar
  75. 75.
    Solaimanian, M., Kennedy, T.W.: Predicting maximum pavement surface temperature using maximum air temperature and hourly solar radiation. Transp. Res. Rec. (1417) (1993)Google Scholar
  76. 76.
    Bentz, D.: A Computer Model to Predict the Surface Temperature and Time-of-Wetness of Concrete Pavements and Bridge Decks. National Institute of Standards and Technology, US Department of Commerce (2000)CrossRefGoogle Scholar
  77. 77.
    Ramadhan, R.H., Wahhab, H.I.A.-A.: Temperature variation of flexible and rigid pavements in Eastern Saudi Arabia. Build. Environ. 32(4), 367–373 (1997)CrossRefGoogle Scholar
  78. 78.
    Yavuzturk, C., Ksaibati, K., Chiasson, A.: Assessment of temperature fluctuations in asphalt pavements due to thermal environmental conditions using a two-dimensional, transient finite-difference approach. J. Mater. Civ. Eng. 17(4), 465–475 (2005)CrossRefGoogle Scholar
  79. 79.
    Hermansson, Å.: Mathematical model for paved surface summer and winter temperature: comparison of calculated and measured temperatures. Cold Reg. Sci. Technol. 40(1), 1–17 (2004)CrossRefGoogle Scholar
  80. 80.
    Rizwan, A.M., Dennis, L.Y., Chunho, L.: A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 20(1), 120–128 (2008)CrossRefGoogle Scholar
  81. 81.
    Oke, T.: The heat island of the urban boundary layer: characteristics, causes and effects. In: Wind Climate in Cities, pp. 81–107. Springer (1995)Google Scholar
  82. 82.
    Bentz, D.P.: A computer model to predict the surface temperature and time-of-wetness of concrete pavements and bridge decks. US Department of Commerce, Technology Administration, National Institute of Standards and Technology (2000)Google Scholar
  83. 83.
    Stempihar, J., et al.: Porous asphalt pavement temperature effects for urban heat island analysis. Transp. Res. Rec. J. Transp. Res. Board 2293, 123–130 (2012)CrossRefGoogle Scholar
  84. 84.
    Taha, H., Konopacki, S., Akbari, H.: Impacts of lowered urban air temperatures on precursor emission and ozone air quality. J. Air Waste Manag. Assoc. 48(9), 860–865 (1998)CrossRefGoogle Scholar
  85. 85.
    Konopacki, S., Akbari, H.: Energy savings for heat-island reduction strategies in Chicago and Houston (including updates for Baton Rouge, Sacramento, and Salt Lake City). Lawrence Berkeley National Laboratory (2002)Google Scholar
  86. 86.
    Lai, L.-W., Cheng, W.-L.: Air quality influenced by urban heat island coupled with synoptic weather patterns. Sci. Total Environ. 407(8), 2724–2733 (2009)CrossRefGoogle Scholar
  87. 87.
    Stathopoulou, E., et al.: On the impact of temperature on tropospheric ozone concentration levels in urban environments. J. Earth Syst. Sci. 117(3), 227–236 (2008)CrossRefGoogle Scholar
  88. 88.
    Kleerekoper, L., van Esch, M., Salcedo, T.B.: How to make a city climate-proof, addressing the urban heat island effect. Resour. Conserv. Recycl. 64, 30–38 (2012)CrossRefGoogle Scholar
  89. 89.
    Zhang, X.Q.: The trends, promises and challenges of urbanisation in the world. Habitat Int. 54, 241–252 (2016)CrossRefGoogle Scholar
  90. 90.
    Yuan, F., Bauer, M.E.: Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 106(3), 375–386 (2007)CrossRefGoogle Scholar
  91. 91.
    O’Malley, C., et al.: Urban Heat Island (UHI) mitigating strategies: a case-based comparative analysis. Sustain. Cities Soc. 19, 222–235 (2015)CrossRefGoogle Scholar
  92. 92.
    Wang, Y., Chen, L., Kubota, J.: The relationship between urbanization, energy use and carbon emissions: evidence from a panel of Association of Southeast Asian Nations (ASEAN) countries. J. Clean. Prod. 112, 1368–1374 (2016)CrossRefGoogle Scholar
  93. 93.
    Santamouris, M.: Regulating the damaged thermostat of the cities—status, impacts and mitigation challenges. Energy Build. 91, 43–56 (2015)CrossRefGoogle Scholar
  94. 94.
    Al-mulali, U., Sab, C.N.B.C., Fereidouni, H.G.: Exploring the bi-directional long run relationship between urbanization, energy consumption, and carbon dioxide emission. Energy 46(1), 156–167 (2012)CrossRefGoogle Scholar
  95. 95.
    Santamouris, M., Paraponiaris, K., Mihalakakou, G.: Estimating the ecological footprint of the heat island effect over Athens. Greece. Climatic Change 80(3–4), 265–276 (2007)CrossRefGoogle Scholar
  96. 96.
    Sarrat, C., et al.: Impact of urban heat island on regional atmospheric pollution. Atmos. Environ. 40(10), 1743–1758 (2006)CrossRefGoogle Scholar
  97. 97.
    Yoshikado, H., Tsuchida, M.: High levels of winter air pollution under the influence of the urban heat island along the shore of Tokyo Bay. J. Appl. Meteorol. 35(10), 1804–1813 (1996)CrossRefGoogle Scholar
  98. 98.
    Bartzokas, A., et al.: Climatic characteristics of summer human thermal discomfort in Athens and its connection to atmospheric circulation. Nat. Hazards Earth Syst. Sci. 13(12), 3271–3279 (2013)CrossRefGoogle Scholar
  99. 99.
    Krüger, E., et al.: Urban heat island and differences in outdoor comfort levels in Glasgow, UK. Theor. Appl. Climatol. 112(1–2), 127–141 (2013)CrossRefGoogle Scholar
  100. 100.
    Orosa, J.A., et al.: Effect of climate change on outdoor thermal comfort in humid climates. J. Environ. Health Sci. Eng. 12(1), 1 (2014)CrossRefGoogle Scholar
  101. 101.
    Thorsson, S., et al.: Potential changes in outdoor thermal comfort conditions in Gothenburg, Sweden due to climate change: the influence of urban geometry. Int. J. Climatol. 31(2), 324–335 (2011)CrossRefGoogle Scholar
  102. 102.
    Hedquist, B.C., Brazel, A.J.: Seasonal variability of temperatures and outdoor human comfort in Phoenix, Arizona, USA. Build. Environ. 72, 377–388 (2014)CrossRefGoogle Scholar
  103. 103.
    Papanastasiou, D., Melas, D., Kambezidis, H.: Air quality and thermal comfort levels under extreme hot weather. Atmos. Res. 152, 4–13 (2015)CrossRefGoogle Scholar
  104. 104.
    Giannopoulou, K., et al.: The influence of air temperature and humidity on human thermal comfort over the greater Athens area. Sustain. Cities Soc. 10, 184–194 (2014)CrossRefGoogle Scholar
  105. 105.
    Katavoutas, G., Georgiou, G.K., Asimakopoulos, D.N.: Studying the urban thermal environment under a human-biometeorological point of view: the case of a large coastal metropolitan city, Athens. Atmos. Res. 152, 82–92 (2015)CrossRefGoogle Scholar
  106. 106.
    Cheung, C.S.C., Hart, M.A.: Climate change and thermal comfort in Hong Kong. Int. J. Biometeorol. 58(2), 137–148 (2014)CrossRefGoogle Scholar
  107. 107.
    Kolokotsa, D., Santamouris, M.: Review of the indoor environmental quality and energy consumption studies for low income households in Europe. Sci. Total Environ. 536, 316–330 (2015)CrossRefGoogle Scholar
  108. 108.
    Sakka, A., et al.: On the thermal performance of low income housing during heat waves. Energy Build. 49, 69–77 (2012)CrossRefGoogle Scholar
  109. 109.
    Wright, A., Young, A., Natarajan, S.: Dwelling temperatures and comfort during the August 2003 heat wave. Build. Serv. Eng. Res. Technol. 26(4), 285–300 (2005)CrossRefGoogle Scholar
  110. 110.
    Lomas, K.J., Kane, T.: Summertime temperatures and thermal comfort in UK homes. Build. Res. Inf. 41(3), 259–280 (2013)CrossRefGoogle Scholar
  111. 111.
    Organization, W.H.: Large analysis and review of European housing and health status (LARES). WHO Regional Office for Europe, Copenhagen (2007)Google Scholar
  112. 112.
    Zavadskas, E., Raslanas, S., Kaklauskas, A.: The selection of effective retrofit scenarios for panel houses in urban neighborhoods based on expected energy savings and increase in market value: The Vilnius case. Energy Build. 40(4), 573–587 (2008)CrossRefGoogle Scholar
  113. 113.
    Summerfield, A., et al.: Milton Keynes Energy Park Revisited: changes in internal temperatures. In: Proceedings of Comfort and Energy Use in Buildings: Getting them Right, NCEUB International Conference. Citeseer (2006)Google Scholar
  114. 114.
    Wingfield, J., et al.: Evaluating the impact of an enhanced energy performance standard on load-bearing masonry domestic construction: understanding the gap between designed and real performance: lessons from Stamford Brook (2011)Google Scholar
  115. 115.
    Mavrogianni, A., et al.: London housing and climate change: impact on comfort and health-preliminary results of a summer overheating study. Open House Int. 35(2), 49 (2010)Google Scholar
  116. 116.
    Pantavou, K., et al.: Evaluating thermal comfort conditions and health responses during an extremely hot summer in Athens. Build. Environ. 46(2), 339–344 (2011)CrossRefGoogle Scholar
  117. 117.
    Gobakis, K., et al.: Development of a model for urban heat island prediction using neural network techniques. Sustain. Cities Soc. 1(2), 104–115 (2011)CrossRefGoogle Scholar
  118. 118.
    Mihalakakou, G., et al.: Simulation of the urban heat island phenomenon in Mediterranean climates. Pure. appl. Geophys. 161(2), 429–451 (2004)CrossRefGoogle Scholar
  119. 119.
    Mihalakakou, G., et al.: Application of neural networks to the simulation of the heat island over Athens, Greece, using synoptic types as a predictor. J. Appl. Meteorol. 41(5), 519–527 (2002)CrossRefGoogle Scholar
  120. 120.
    Livada, I., et al.: Determination of places in the great Athens area where the heat island effect is observed. Theor. Appl. Climatol. 71(3–4), 219–230 (2002)CrossRefGoogle Scholar
  121. 121.
    Britain, G.: English House Condition Survey 1991: Energy Report. Great Britain, Department of the Environment (1996)Google Scholar
  122. 122.
    Filleul, L., et al.: The relation between temperature, ozone, and mortality in nine French cities during the heat wave of 2003. Environ. Health Perspect. 114, 1344–1347 (2006)CrossRefGoogle Scholar
  123. 123.
    Flynn, A., McGreevy, C., Mulkerrin, E.: Why do older patients die in a heatwave? QJM 98(3), 227–229 (2005)CrossRefGoogle Scholar
  124. 124.
    Hajat, S., et al.: Impact of high temperatures on mortality: is there an added heat wave effect? Epidemiology 17(6), 632–638 (2006)CrossRefGoogle Scholar
  125. 125.
    Kovats, R.S., Kristie, L.E.: Heatwaves and public health in Europe. Eur. J. Public Health 16(6), 592–599 (2006)CrossRefGoogle Scholar
  126. 126.
    Ledrans, M., et al.: Heat wave 2003 in France: risk factors for death for elderly living at home. Epidemiology 15(4), S125 (2004)CrossRefGoogle Scholar
  127. 127.
    Linares, C., Diaz, J.: Impact of high temperatures on hospital admissions: comparative analysis with previous studies about mortality (Madrid). Eur. J. Public Health 18(3), 317–322 (2008)CrossRefGoogle Scholar
  128. 128.
    Rydin, Y., et al.: Shaping cities for health: complexity and the planning of urban environments in the 21st century. Lancet 379(9831), 2079 (2012)CrossRefGoogle Scholar
  129. 129.
    Rosenfeld, A.H., et al.: Mitigation of urban heat islands: materials, utility programs, updates. Energy Build. 22(3), 255–265 (1995)MathSciNetCrossRefGoogle Scholar
  130. 130.
    Patz, J.A., et al.: Impact of regional climate change on human health. Nature 438(7066), 310–317 (2005)CrossRefGoogle Scholar
  131. 131.
    Baccini, M., et al.: Heat effects on mortality in 15 European cities. Epidemiology 19(5), 711–719 (2008)CrossRefGoogle Scholar
  132. 132.
    Chan, E.Y.Y., et al.: A study of intracity variation of temperature-related mortality and socioeconomic status among the Chinese population in Hong Kong. J. Epidemiol. Community Health 66(4), 322–327 (2012)CrossRefGoogle Scholar
  133. 133.
    Changnon, S.A., Kunkel, K.E., Reinke, B.C.: Impacts and responses to the 1995 heat wave: a call to action. Bull. Am. Meteorol. Soc. 77(7), 1497–1506 (1996)CrossRefGoogle Scholar
  134. 134.
    Diaz, J., et al.: Effects of extremely hot days on people older than 65 years in Seville (Spain) from 1986 to 1997. Int. J. Biometeorol. 46(3), 145–149 (2002)CrossRefGoogle Scholar
  135. 135.
    Dousset, B., et al.: Satellite monitoring of summer heat waves in the Paris metropolitan area. Int. J. Climatol. 31(2), 313–323 (2011)CrossRefGoogle Scholar
  136. 136.
    Goggins, W.B., et al.: Effect modification of the association between short-term meteorological factors and mortality by urban heat islands in Hong Kong. PLoS ONE 7(6), e38551 (2012)CrossRefGoogle Scholar
  137. 137.
    Huynen, M.M., et al.: The impact of heat waves and cold spells on mortality rates in the Dutch population. Environ. Health Perspect. 109(5), 463 (2001)CrossRefGoogle Scholar
  138. 138.
    Kovats, R.S., Hajat, S., Wilkinson, P.: Contrasting patterns of mortality and hospital admissions during hot weather and heat waves in Greater London, UK. Occup. Environ. Med. 61(11), 893–898 (2004)CrossRefGoogle Scholar
  139. 139.
    Loughnan, M.E., Nicholls, N., Tapper, N.J.: The effects of summer temperature, age and socioeconomic circumstance on Acute Myocardial Infarction admissions in Melbourne, Australia. Int. J. Health Geogr. 9(1), 1 (2010)CrossRefGoogle Scholar
  140. 140.
    Pirard, P., et al.: Summary of the mortality impact assessment of the 2003 heat wave in France. Euro Surveill. Bull. Eur. Sur Mal. Transm. Eur. Commun. Dis. Bull. 10(7), 153–156 (2005)Google Scholar
  141. 141.
    Smoyer-Tomic, K.E., Kuhn, R., Hudson, A.: Heat wave hazards: an overview of heat wave impacts in Canada. Nat. Hazards 28(2–3), 465–486 (2003)CrossRefGoogle Scholar
  142. 142.
    Wilkinson, P., et al.: Cold comfort: the social and environmental determinants of excess winter death in England, 1986–1996 (2001)Google Scholar
  143. 143.
    Dhainaut, J.-F., et al.: Unprecedented heat-related deaths during the 2003 heat wave in Paris: consequences on emergency departments. Crit. Care 8(1), 1 (2003)CrossRefGoogle Scholar
  144. 144.
    Number of Heat-Related Deaths: Center for Disease Control and Prevention (2012). Accessed 5 Jan 2017
  145. 145.
    Climate Change Indicators in the United States: Heat-Related Deaths. EPA, United States Environmental Protection Agency, August 2016. Accessed 5 Jan 2017.
  146. 146.
    Klinenberg, E.: Heat Wave: A Social Autopsy of Disaster in Chicago. University of Chicago Press, Chicago (2015)CrossRefGoogle Scholar
  147. 147.
    Stone, B., Hess, J.J., Frumkin, H.: Urban form and extreme heat events: are sprawling cities more vulnerable to climate change than compact cities. Environ. Health Perspect. 118(10), 1425–1428 (2010)CrossRefGoogle Scholar
  148. 148.
    Hansen, A., et al.: The effect of heatwaves on mental health in a temperate Australian city. Epidemiology 19(6), S85 (2008)Google Scholar
  149. 149.
    Cohn, E.G.: Weather and crime. Br. J. Criminol. 30(1), 51–64 (1990)CrossRefGoogle Scholar
  150. 150.
    Cartalis, C., et al.: Modifications in energy demand in urban areas as a result of climate changes: an assessment for the southeast Mediterranean region. Energy Convers. Manag. 42(14), 1647–1656 (2001)CrossRefGoogle Scholar
  151. 151.
    Davies, M., Steadman, P., Oreszczyn, T.: Strategies for the modification of the urban climate and the consequent impact on building energy use. Energy Policy 36(12), 4548–4551 (2008)CrossRefGoogle Scholar
  152. 152.
    Dhalluin, A., Bozonnet, E.: Urban heat islands and sensitive building design–A study in some French cities’ context. Sustain. Cities Soc. 19, 292–299 (2015)CrossRefGoogle Scholar
  153. 153.
    Fung, W., et al.: Impact of urban temperature on energy consumption of Hong Kong. Energy 31(14), 2623–2637 (2006)MathSciNetCrossRefGoogle Scholar
  154. 154.
    Hassid, S., et al.: The effect of the Athens heat island on air conditioning load. Energy Build. 32(2), 131–141 (2000)CrossRefGoogle Scholar
  155. 155.
    Hirano, Y.: The effects of urban heat island phenomenon on residential and commercial energy consumption. Environ. Syst. Res. 26, 527–532 (1998)CrossRefGoogle Scholar
  156. 156.
    Hirano, Y., Fujita, T.: Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo. Energy 37(1), 371–383 (2012)CrossRefGoogle Scholar
  157. 157.
    Kikegawa, Y., et al.: Impacts of city-block-scale countermeasures against urban heat-island phenomena upon a building’s energy-consumption for air-conditioning. Appl. Energy 83(6), 649–668 (2006)CrossRefGoogle Scholar
  158. 158.
    Kolokotroni, M., Giannitsaris, I., Watkins, R.: The effect of the London urban heat island on building summer cooling demand and night ventilation strategies. Sol. Energy 80(4), 383–392 (2006)CrossRefGoogle Scholar
  159. 159.
    Santamouris, M., et al.: On the impact of urban climate on the energy consumption of buildings. Sol. Energy 70(3), 201–216 (2001)CrossRefGoogle Scholar
  160. 160.
    Taha, H., et al.: Residential cooling loads and the urban heat island—the effects of albedo. Build. Environ. 23(4), 271–283 (1988)CrossRefGoogle Scholar
  161. 161.
    Santamouris, M., et al.: On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings—A review. Energy Build. 98, 119–124 (2015)CrossRefGoogle Scholar
  162. 162.
    Kolokotroni, M., et al.: London’s urban heat island: Impact on current and future energy consumption in office buildings. Energy Build. 47, 302–311 (2012)CrossRefGoogle Scholar
  163. 163.
    Garnaut, R.: Garnaut Climate Change Review–Update 2011 Update Paper four: Transforming rural land use (2011)Google Scholar
  164. 164.
    Dell, M., Jones, B.F., Olken, B.A.: Climate change and economic growth: evidence from the last half century, National Bureau of Economic Research (2008)Google Scholar
  165. 165.
    McPherson, E.G., Muchnick, J.: Effects of street tree shade on asphalt concrete pavement performance (2005)Google Scholar
  166. 166.
    Zhang, K.: The effect of urban heat islands and traffic wheel pressure on the performance of asphalt pavements. 2015 NCUR (2015)Google Scholar
  167. 167.
    Ferguson, B., et al.: Reducing urban heat islands: compendium of strategies-cool pavements (2008)Google Scholar
  168. 168.
    Akbari, H., Menon, S., Rosenfeld, A.: Global cooling: Effect of urban albedo on global temperature. Lawrence Berkeley National Laboratory (2008)Google Scholar
  169. 169.
    Scruggs, G.: How Much Public Space Does a City Need? Inspiring Better Cities (2015)Google Scholar
  170. 170.
    Konopacki, S., Akbari, H.: Energy savings for heat-island reduction strategies in Chicago and Houston (including updates for Baton Rouge, Sacramento, and Salt Lake City) (2002)Google Scholar
  171. 171.
    Corburn, J.: Cities, climate change and urban heat island mitigation: localising global environmental science. Urban Stud. 46(2), 413–427 (2009)CrossRefGoogle Scholar
  172. 172.
    Bender, N.: Global Million Cool Roofs Challenge. Accessed 25 June 2019
  173. 173.
    Kaloush, K.: Paving materials and the urban climate. In: TR News, p. 11 (2007)Google Scholar
  174. 174.
    Systematics, C.: Cool pavement report, EPA cool pavements study—task 5 (2005)Google Scholar
  175. 175.
    Chen, J., et al.: Field and laboratory measurement of albedo and heat transfer for pavement materials. Constr. Build. Mater. 202, 46–57 (2019)CrossRefGoogle Scholar
  176. 176.
    Pavement Facts, Washington Asphalt Pavement Association (2014). Accessed 23 June 2019
  177. 177.
    Tran, N., et al.: Strategies for design and construction of high-reflectance asphalt pavements. Transp. Res. Rec. 2098(1), 124–130 (2009)CrossRefGoogle Scholar
  178. 178.
    Pourshams-Manzouri, T.: Pavement temperature effects on overall urban heat island. Arizona State University (2013)Google Scholar
  179. 179.
    Carlson, J., et al.: Evaluation of in situ Temperatures, Water Infiltration and Regional 1 Feasibility of Pervious Concrete Pavements 2 3 (2008)Google Scholar
  180. 180.
    Haselbach, L., et al.: Cyclic heat island impacts on traditional versus pervious concrete pavement systems. Transp. Res. Rec. 2240(1), 107–115 (2011)CrossRefGoogle Scholar
  181. 181.
    Taleghani, M., et al.: The impact of heat mitigation strategies on the energy balance of a neighborhood in Los Angeles. Sol. Energy 177, 604–611 (2019)CrossRefGoogle Scholar
  182. 182.
    Levinson, R., et al.: A novel technique for the production of cool colored concrete tile and asphalt shingle roofing products. Sol. Energy Mater. Sol. Cells 94(6), 946–954 (2010)CrossRefGoogle Scholar
  183. 183.
    Santamouris, M.: Cooling the cities–a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 103, 682–703 (2014)CrossRefGoogle Scholar
  184. 184.
    Pianella, A., et al.: Green roofs in Australia: Review of thermal performance and associated policy development (2016)Google Scholar
  185. 185.
    Kolokotsa, D.D., et al.: Cool roofs and cool pavements application in Acharnes, Greece. Sustain. Cities Soc. 37, 466–474 (2018)CrossRefGoogle Scholar
  186. 186.
    Shickman, K., Rogers, M.: Capturing the true value of trees, cool roofs, and other urban heat island mitigation strategies for utilities. In: Energy Efficiency, pp. 1–12 (2019)Google Scholar
  187. 187.
    Pisello, A.L.: State of the art on the development of cool coatings for buildings and cities. Sol. Energy 144, 660–680 (2017)CrossRefGoogle Scholar
  188. 188.
    Santamouris, M., et al.: On the energy impact of urban heat island in Sydney: climate and energy potential of mitigation technologies. Energy Build. 166, 154–164 (2018)CrossRefGoogle Scholar
  189. 189.
    Cui, Y.-Q., Zheng, H.-C.: Impact of three-dimensional greening of buildings in cold regions in China on urban cooling effect. Procedia Eng. 169, 297–302 (2016)CrossRefGoogle Scholar
  190. 190.
    ShengYue, W., et al.: Unidirectional heat-transfer asphalt pavement for mitigating the urban heat island effect. J. Mater. Civ. Eng. 26(5), 812–821 (2013)CrossRefGoogle Scholar
  191. 191.
    Akbari, H., Matthews, H.D.: Global cooling updates: reflective roofs and pavements. Energy Build. 55, 2–6 (2012)CrossRefGoogle Scholar
  192. 192.
    Santamouris, M., Ding, L., Osmond, P.: Urban heat island mitigation. In: Decarbonising the Built Environment, pp. 337–355. Springer (2019)Google Scholar
  193. 193.
    Li, H., et al.: The use of reflective and permeable pavements as a potential practice for heat island mitigation and stormwater management. Environ. Res. Lett. 8(1), 015023 (2013)CrossRefGoogle Scholar
  194. 194.
    Battista, G., et al.: Green roof effects in a case study of Rome (Italy). Energy Procedia 101, 1058–1063 (2016)CrossRefGoogle Scholar
  195. 195.
    Sahnoune, S., Benhassine, N.: Quantifying the impact of green-roofs on urban heat island mitigation. Int. J. Environ. Sci. Dev. 8(2), 116 (2017)CrossRefGoogle Scholar
  196. 196.
    Park, J., et al.: The influence of small green space type and structure at the street level on urban heat island mitigation. Urban For. Urban Green. 21, 203–212 (2017)CrossRefGoogle Scholar
  197. 197.
    Yang, J., et al.: Green and cool roofs’ urban heat island mitigation potential in tropical climate. Sol. Energy 173, 597–609 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Public Works Engineering Department, Faculty of EngineeringTanta UniversityTantaEgypt
  2. 2.Public Works Engineering Department, Faculty of EngineeringMansoura UniversityMansouraEgypt

Personalised recommendations