Advertisement

Numerical Prediction of Thermo-Mechanical Behavior of Energy Pile in Pyroclastic Soil

  • Gianpiero RussoEmail author
  • Gabriella Marone
  • Luca Di Girolamo
  • Marianna Pirone
Conference paper
Part of the Sustainable Civil Infrastructures book series (SUCI)

Abstract

The use of the ground as heat source or heat sink to manage the thermal loads within buildings through foundation is a well-established technology known as Energy Geostructures (EGS). The application of heat exchange via piles foundation known as Energy Piles (EP) are becoming increasingly popular in many European countries in the last few years. Field scale and small-scale laboratory tests represent a useful tool to get an insight in the mechanism governing pile-soil interaction under thermo-mechanical loading. In situ testing provides more realistic thermo-hydro-mechanical behavior of piles but is costly and time consuming. For these reasons laboratory small scale tests are often preferred. In such a case known stress-strain histories and controlled boundary conditions are more easily obtained. In this paper, class A predictions of small-scale laboratory tests are presented and discussed. The predictions are based on fully coupled thermo-mechanical 2D FEM simulations; these refer to a prototype cubical box made of PMMA designed to minimize boundary effects. The EP is embedded in a continuous homogeneous layer of a pyroclastic sandy soil and equipped with heat exchange pipes with circulating heat carrier fluid. Heating and cooling cycles are simulated under operational head axial load. The results of the numerical simulations are used for a proper design of the physical modeling that will be set up at laboratory and for calibration of the sensors to be installed.

References

  1. Adinolfi, M., Mauro, A., Maiorano, R.M.S., Massarotti, N., Aversa, S.: Thermo-mechanical behaviour of energy pile in underground railway construction site. In: Proceedings of 1st International Conference of Energy Geotechnics, Kiel, Germany, 29–31 August 2016 (2016).  https://doi.org/10.1201/b21938-15
  2. Amatya, B.L., Soga, K., Bourne-Webb, P.J., Amis, T., Laloui, L.: Thermo-mechanical behaviour of energy piles. Geotechnique 62(6), 503–519 (2012).  https://doi.org/10.1680/geot.10.p.116. ISSN: 0016-8505CrossRefGoogle Scholar
  3. Akrouch, G.A., Sanchez, M., Briaud, J.-L.: Thermo-mechanical behaviour of energy piles in high placity clays. Acta Geotech. 9, 399–412 (2014)CrossRefGoogle Scholar
  4. Baldi, G., Bellotti, R., Ghionna, V., Jamiolkowski, M., Pasqualini, E.: Interpretation of CPT’s and CPTU’s. 2nd Part: drained penetration. In: Proceeding 4th International Geotechnicaln Seminar, Singapore, pp. 143–156. (1986)Google Scholar
  5. Bodas Freitas, T.M., Cruz Silva, F., Bourne-Webb, P.J.: The response of energy foundations under thermo-mechanical loading. In: Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering, Paris (2013)Google Scholar
  6. Bolton M.D.: The strength and dilatancy of sands. Cambridge University Engineering Department (1984). ISSN: 1523–3812Google Scholar
  7. Bourne-Webb, P., Amatya, B., Soga, K., Amis, T., Davidson, C., Payne, P.: Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles. Geotechnique 59(3), 237–248 (2009).  https://doi.org/10.1680/geot.2009.59.3.237CrossRefGoogle Scholar
  8. Bourne-Webb, P.J., Soga, K., Amatya, B.: A framework for understanding energy pile behaviour. Geotech. Eng. 166(GE2), 170–177 (2013).  https://doi.org/10.1680/geng.10.00098
  9. Bourne Webb, P.J., Bodas Freitas, T.M.: Freitas Assuncao R.M.: Soil-pile thermal interactions in energy foundations. Geotechnique 66(2), 167–171 (2016).  https://doi.org/10.1680/jgeot.15.t.017
  10. Bourne Webb, P.J., Bodas Freitas, T.M., Freitas Assuncao, R.M.: A review of pile-soil interactions in isolated, thermally-activated piles. Comput. Geotech. 108, 61–74 (2019).  https://doi.org/10.1016/j.compgeo.2018.12.008CrossRefGoogle Scholar
  11. Robertson, P.K., Campanella G.: Interpretation of cone penetration tests. Part I: Sand. Can. Geotech. J. (1983).  https://doi.org/10.1139/t83-078
  12. Durgunoglhu., T., Mitchell, K.: Static penetration resistance of soils: I-ANALYSIS. In: Proceedings of ASCE Specialty Conference on in-situ Measurement of Soil Parameters, Raleigh, vol. 1 (1975)Google Scholar
  13. Fadejev, J., Simson, R., Kurnitski, J., Haghighat, F.: A review on energy piles design, sizing and modelling. Energy 122(2017), 390–407 (2017).  https://doi.org/10.1016/j.energy.2017.01.097CrossRefGoogle Scholar
  14. Hamada, Y., Saitoh, H., Nakamura, M., Kubota, H., Ochifuji, K.: Field performance of an energy pile system for space heating. Energy Build. 39(2007), 517–524 (2007).  https://doi.org/10.1016/j.enbuild.2006.09.006CrossRefGoogle Scholar
  15. Kalantidou, A., Tang, A.M., Pereira, J.M., Hassen, G.: Preliminary study on the mechanical behaviour of heat exchanger pile in physical model, Geotechnique 62 (2012).  https://doi.org/10.1680/geot.11.t.013
  16. Khodaparast, M., Kiani, A.M. Bayesteh, H.: Numerical study of bearing capacity and consolidation settlement of energy piles in fine-grained soils. In: Energy Geotechnics (2016). ISBN 978-1-138-03299-6. ISBN: 978-1-138-03299-6Google Scholar
  17. Laloui, L., Nuth, M., Vulliet, L.: Experimental and numerical investigations of the behaviour of a heat exchanger pile. Int. J. Numer. Anal. Methods Geomech. 30, 763–781 (2006).  https://doi.org/10.1016/B978-0-08-100191-2.00016-2. ISBN: 9780081002384CrossRefGoogle Scholar
  18. Lancellotta, R.: Analisi di Affidabilità in Ingegneria Geotecnica. Atti dell’Istituto di Scienza delle Costruzioni, Number 625, Politecnico di Torino (1983)Google Scholar
  19. Luo, J., Zhao, H., Gui, S., Xiang, W., Rohn, J.: Study of thermal migration and induced mechanical effects in double U-tube energy piles. Comput. Geotech. 91(2017), 1–11 (2017).  https://doi.org/10.1016/j.compgeo.2017.06.015. ISSN: 18737633CrossRefGoogle Scholar
  20. Maiorano, R.M.S., Marone, G., Russo, G., Di Girolamo, L.: Experimental behavior and numerical analysis of energy piles. In: XVII ECSMGE 2019 (2019). In printGoogle Scholar
  21. Marone, G., Russo, G., Di Girolamo, L.: Carichi termici e carichi meccanici per un palo cfa attestato a tufo. In: IARG GENOVA 2018 (2018)Google Scholar
  22. Marone, G., Russo, G., Di Girolamo, L.: Studio parametrico del comportamento di un palo singolo sottoposto a carichi termo-meccanici (2019)Google Scholar
  23. Morrone, B., Coppola, G., Raucci, V.: Energy and economic savings using geothermal heat pumps in different climates. Energy Convers. Manag. 88(2014), 189–198 (2014).  https://doi.org/10.1016/j.enconman.2014.08.007. ISSN: 01968904CrossRefGoogle Scholar
  24. Murphy, K.D., McCArtney, J.S., Henry, K.S.: Evaluation of thermo-mechanical and thermal behaviour of fullscale energy foundations. Acta Geotech. 10, 179–195 (2015).  https://doi.org/10.1007/s11440-013-0298-4CrossRefGoogle Scholar
  25. Murphy, K.D., McCartney, J.S.: Seasonal response of energy piles foundations during building operation. Geotech. Geol. Eng. 33(2), 343–356 (2015).  https://doi.org/10.1007/s10706-014-9802-3CrossRefGoogle Scholar
  26. Nguyen, V.T., Tang, A.M., Pereira, J.M.: Long-term thermo-mechanical behavior of energy pile in dry sand. Acta Geotech. 2017(12), 729–737 (2017).  https://doi.org/10.1007/s11440-017-0539-zCrossRefGoogle Scholar
  27. Pahud, D., Hubbuch, M.: Measured thermal performances of the energy pile system of the dock midfield at Zürich airport. In: Proceedings European Geothermal Congress 2007, Unterhaching, Germany, 30 May–1 June 2007 (2007)Google Scholar
  28. Park, H., Lee, S., Yoon, S., Choi, J.: Evaluation of thermal response and performance of PHC energy pile: Field experiments and numerical simulation. Appl. Energy 103(2013), 12–24 (2013).  https://doi.org/10.1016/j.apenergy.2012.10.012. ISSN: 03062619CrossRefGoogle Scholar
  29. Parkin, A.K., Lunne, T.: Boundary effects in the laboratory calibration of a cone penetrometer for sand. In: Proceedings of the 2nd European symposium on penetration testing, vol. 2, pp. 761–768 (1982)Google Scholar
  30. Rammal, D., Mroueh, H., Burlon, S.: Impact of thermal solicitations on the design of energy piles. Renew. Sustain. Energy Rev. 92, 111–120 (2018).  https://doi.org/10.1016/j.rser.2018.04.049. ISSN: 18790690CrossRefGoogle Scholar
  31. Raucci, M.P.: Comportamento di platee su pali in terreni sabbiosi. Ph.D. thesis, Università degli studi di Napoli Federico II (2017)Google Scholar
  32. Rotta Loria, A.F., Di Donna, A., Laloui, L.: numerical study on the suitability of centrifuge testing for capturing the thermal-induced mechanical behavior of energy piles. J. Geotech. Geoenviron. Eng. (2015).  https://doi.org/10.1061/(ASCE)GT1943-5606.0001318CrossRefGoogle Scholar
  33. Rui, Y., Yin, M.: Investigations of pile-soil interaction under thermo mechanical loading. Can. Geotech. J. (2018).  https://doi.org/10.1139/cgj-2017-009CrossRefGoogle Scholar
  34. Russo, G., Maiorano, R.M.S., Marone, G.: Analysis of thermo-mechanical behaviour of energy piles. Issue of SEAGS-AGSSEA Journal, June 2019Google Scholar
  35. Saggu, R., Chakraborty, T.: Cyclic thermo-mechanical analysis of energy piles in sand. Geotech. Geol. Eng. (2014).  https://doi.org/10.1007/s10706-014-9798-8CrossRefGoogle Scholar
  36. Santiago, C., Pardo de Santayana, F., de Groot, M., Urchueguia, J., Badenes, B., Magraner, T., Arcos, J.L., Martin, F.: Thermo mechanical behaviour of a thermo-active precast pile. Bulg. Chem. Commun. 48(Special Issue E), 41–54 (2016)Google Scholar
  37. Sutman, M., Brettmann, T., Guney, Olgun C.: Full-scale in situ tests on energy piles: Head and base restraining effects on the structural behaviour of three energy piles. Geomech. Energy Environ. 18, 56–68 (2019).  https://doi.org/10.1016/j.gete.2018.08.002CrossRefGoogle Scholar
  38. UNI/TS 11300-1:2014: Evaluation of energy need for heating and coolingGoogle Scholar
  39. Vasilescu, R., Fauchille, A., Dano, C., Kotronis, P., Manirakiza, R., Gotteland, P.: Impact of temperature cycles at soil – concrete interface for energy piles. In: Energy Geotechnics SEG-2018 (2018)Google Scholar
  40. Wang, C., Kong, G., Liu, H., Ng, C.W.W.: Different types of energy piles with heating-cooling cycles. Geotech. Eng. (2017).  https://doi.org/10.1680/jgeen.16.00061. ISSN:1353-2618CrossRefGoogle Scholar
  41. Yavari, N., Tang, A.M., Pereira, J.M., Hassen, G.: A simple method for numerical modelling of energy pile’s mechanical behaviour. Geotechique Lett. (2013).  https://doi.org/10.1680/geolett.13.00053CrossRefGoogle Scholar
  42. Yavari, N., Tang, A.M., Pereira, J.-M., Hassen, G.: Experimental study on the mechanical behaviour of a heat exchanger pile using physical modelling. Acta Geotechnica 9 (2014).  https://doi.org/10.1007/s11440-014-0310-7
  43. You, S., Cheng, X., Guo, H., Yao, Z.: Experimental study on structural response of CFG energy piles. Appl. Therm. Eng. 48(Special Issue E), 41–54 (2016)Google Scholar
  44. Zarrella, A., De Carli, M., Galgaro, A.: Thermal performance of two types of energy foundation pile: helical pipe and triple U-tube. Appl. Therm. Eng. 61(2013), 301–310 (2013).  https://doi.org/10.1016/j.applthermaleng.2013.08.011. ISSN:13594311CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Gianpiero Russo
    • 1
    Email author
  • Gabriella Marone
    • 1
  • Luca Di Girolamo
    • 1
  • Marianna Pirone
    • 1
  1. 1.University of Napoli Federico IINaplesItaly

Personalised recommendations