Monitoring of Marine Sands Before and After Vibroflottation Treatment

  • Khelalfa HoussamEmail author
Conference paper
Part of the Sustainable Civil Infrastructures book series (SUCI)


One of the major problems related to civil engineering structures is that of ground movements with amplitude ranges from a few millimeters to a few meters. Soil treatment by vibroflotation is a recent technique for improving soil with poor geo-mechanical properties. In addition, this treatment minimizes the risk of liquefaction and settlement. This Article is interested to establish diagnostic and monitoring of vibroflottation works, basing on the results of SPT tests, laboratory tests and quality control as well as the details of bathymetric and the properties of seabed soils before and after treatment. On the other hand, the work consists in making a in-situ monitoring using topographic hardware carried out on the treated soil, in order to verify its influence on the stability of the vertical breakwaters. The tests results will be compared with in-situ measurements.


Coastal sands Vibroflottation SPT Liquefaction Monitoring Settlement 


  1. 1.
    Bell, F.G., Detry, V.: Méthode de traitement des sols instables. Eyrolles, Paris (1978)Google Scholar
  2. 2.
    Farhat, H., Robert, J., Berthelot, P.: Extension du port de la Condamine à Monaco - Confortement des sols en place et des remblais sous-marins. Rev. Fr. Geotech. 112, 29–34 (2005)CrossRefGoogle Scholar
  3. 3.
    Lehuérou-Kérisel, J., Caquot, A., Kersiel, J.: Traité de la mécanique des sols, 4eme édition, Paris (1966)Google Scholar
  4. 4.
    Sreekantiah, H.R.: Vibroflottation for ground improvement - a case study. In: Proceedings of the Third International Conference on Case Histories in Geotechnical Engineering, St. Louis, Missouri, pp. 949–954 (1993)Google Scholar
  5. 5.
    Khelalfa, H.: Traitement du sol par vibroflottation application aux ouvrages de protection du port de DjenDjen. Jijel Algérie. J. Mater. Eng. Struct. 3(4), 149–160 (2016)Google Scholar
  6. 6.
    Amélioration des sols (Vibroflottation) Ménard, Doc. Keller (1974)Google Scholar
  7. 7.
    Sayar, A.D., Khalilpasha, M.: Soil improvement using vibro replacement technique. Int. J. Adv. Environ. Biol. 6(2), 658–661 (2012)Google Scholar
  8. 8.
    McCabe, B.A., McNeill, J.A., Black, J.A.: Ground improvement using the vibrostone column technique. In: Proceeding of the Meeting of Engineers Ireland West Region, NUI Galway, 15 March 2007Google Scholar
  9. 9.
    Jefferies, M., Been, K.: Soil Liquefaction, a Critical State Approach. CRC Press, Boca Raton (2015)CrossRefGoogle Scholar
  10. 10.
    Khelalfa, H.: Traitement du sol par vibroflottation, I.: Proceeding of 2eme Séminaire national sur les géo-risques, Université Mohammed Seddik Benyahia- Jijel-Algérie, 17 et 18 Novembre 2015Google Scholar
  11. 11.
    Khelalfa, H.: Traitement du sol par vibroflottation. In: Proceeding of 3ème communication Journées d’Etudes CGCE, Université Mohammed Seddik Benyahia- Jijel-Algérie 13–14 mai 2014Google Scholar
  12. 12.
    Tarzaghi, K., Peck, R.B., Mesri, G.: Soil Mechanics in Engineering Practice, 3rd edn. Wiley, New York (1996)Google Scholar
  13. 13.
    Mecsi, J., Gökalp, A., Düzceer, R.: Compactage des remblais hydrauliques par la technique de vibroflotation. In: Proceeding of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, Université de Pécs, Hungary (2005)Google Scholar
  14. 14.
    Truong, P.H.V.: Dynamic excess pore water pressures by dynamic soil masses and dynamic water heights. Int. J. Geol. 3(6), 77–83 (2012)Google Scholar
  15. 15.
    Gökalp, A., Düzceer, R.: Vibratory deep compaction of hydraulic fills. In: Proceeding of the XIIIth European Conference on Soil Mechanics and Geotechnical Engineering, ISSMGE, Prague, Czech Republic (2003)Google Scholar
  16. 16.
    Aussillous, P., Collart, D., Pouliquen, O.: Liquéfaction des sols sous vagues. In: Proceeding of 18ème Congrès Français de Mécanique Grenoble, 27–31 août 2007Google Scholar
  17. 17.
    Andrus, R.D., Chung, R.M.: Ground Improvement Techniques for Liquefaction Remediation Near Existing Lifelines. Report, NISTIR 5714, Building and Fire Research Laboratory, National Institute of Standards and Technology, Gaithersburg (1995)Google Scholar
  18. 18.
    Giese, S.: Numerical Simulation of vibroflotation compaction – Application of dynamic boundary conditions. In: Konietzky (ed.) Numerical Modeling in Micromechanics via Particle Methods (2003)Google Scholar
  19. 19.
    Vernay, M., Morvan, M., Breul, P.: Etude du comportement des sols non saturés à la liquéfaction. In: Proceeding of 33èmes Rencontres de l’AUGC, ISABTP/UPPA, Anglet, 27 au 29 mai 2015Google Scholar
  20. 20.
    Massarsch, K.R.: Effects of vibratory compaction. In: International Conference on Vibratory Pile Driving and Deep Soil Compaction, Louvain-la-Neuve, Keynote Lecture, pp. 33–42 (2002)Google Scholar
  21. 21.
    Khelalfa, H.: Coastal Soil Treatment to Stabilize Vertical Breakwaters. LAMBERT Academic Publishing (2018). ISBN: 978-3-330-03812-7Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Civil Engineering and Surveying, Faculty of TechnologyUniversity of PortsmouthPortsmouthUK
  2. 2.Civil Engineering and Environmental Laboratory (LGCE)University of JijelTaher, JijelAlgeria
  3. 3.Department of Civil, Geotechnical & Coastal Engineering of K.E.C LaboratoryTaher, JijelAlgeria

Personalised recommendations