Advertisement

METABIOTICS pp 53-55 | Cite as

Methods and Techniques Used for Obtaining and Identifying of Microbial Low Molecular Weight Cellular Compounds, Metabolites and Signaling Molecules

  • Boris A. Shenderov
  • Alexander V. Sinitsa
  • Mikhail M. Zakharchenko
  • Christine Lang
Chapter
  • 18 Downloads

Abstract

Different techniques and analytical technologies are used for identification of compoundspotentially suitable for constructing various metabiotics. Their choice depends on analytical purposes, qualitative and/or quantitative characteristics of microbial complexes and molecules under study. Table 1 shows some techniques used for microbial cell destruction, removal of live microorganisms and extraction of low molecular weight biologically active compounds’.

Bibliography

  1. Aguilar-Toaláa JE, Garcia-Varela R, Garcia HS, Mata-Harod V, González-Córdovaa AF et al. Postbiotics: An evolving term within the functional foods field. Trends in Food Science & Technology. 2018;75:105–114. doi: https://doi.org/10.1016/j.tifs.2018.03.009.CrossRefGoogle Scholar
  2. Almada CN, Almada CN, Martinez RCR, Sant'Ana AS. Paraprobiotics: Evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Trends in Food Science & Technology. 2016;58:96–114. doi: https://doi.org/10.1016/j.tifs.2016.09.011.CrossRefGoogle Scholar
  3. Aurich MK, Thiele I. Computational modeling of human metabolism and its application to systems biomedicine. Methods Mol Biol. 2016;1386:253–281. doi: https://doi.org/10.1007/978-1-4939-3283-2_12.CrossRefPubMedGoogle Scholar
  4. Beger RD, Dunn W, Schmidt MA, Gross SS, Kirwan JA et al. Metabolomics enables precision medicine: «A White Paper, Community Perspective». Metabolomics. 2016;12:149. doi: https://doi.org/10.1007/s11306-016-1094-6.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Beloborodova NV. Integration of human metabolism and its microbiota in critical conditions. General Reanimatology. 2012;VIII(4):42–54 (in Russian).CrossRefGoogle Scholar
  6. Birmpa A, Sfika V, Vantarakis A. Ultraviolet light and ultrasound as non-thermal treatments for the inactivation of microorganisms in fresh ready-to-eat foods. Inter J Food Microbiol. 2013;167:96–102. doi: https://doi.org/10.1016/j.ijfoodmicro.2013.06.005.CrossRefGoogle Scholar
  7. Braune A, Blaut M. Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut microbes. 2016;7:216–234. doi: https://doi.org/10.1080/19490976.2016.1158395.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Diels AMJ, Michiels CW. High-pressure homogenization as a non-thermal technique for the inactivation of microorganisms. Critical Rev Microbiol. 2016;32:201–216. doi: https://doi.org/10.1080/10408410601023516.CrossRefGoogle Scholar
  9. Dorrestein PC, Mazmanian SK, Knight R. Finding the missing links among metabolites, microbes, and the host. Immunity. 2014;40:824–832. doi: https://doi.org/10.1016/j.immuni.2014.05.015.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Efaq AN, Rahman NNNA, Nagao H, Al-Gheethi AA, Shahadat M, Kadir MOA. Supercritical carbon dioxide as non-thermal alternative technology for safe handling of clinical wastes. Environmental Processes. 2015;2:797–822.CrossRefGoogle Scholar
  11. Engevik MA, Versalovic J. Biochemical feature of beneficial microbes: foundation for therapeutic microbiology. Microbial Spectr. 2017;5(5). doi: https://doi.org/10.1128/microbiolspec.BAD-0012-2016.
  12. Francavilla R, Lionetti E, Castellaneta S, Magistà A, Maurogiovanni G et al. Inhibition of Helicobacter pylori infection in humans by Lactobacillus reuteri ATCC 55730 and effect on eradication therapy: a pilot study. Helicobacter. 2008;13:127–134. doi: https://doi.org/10.1111/j.1523-5378.2008.00593.x.CrossRefPubMedGoogle Scholar
  13. Lebeer S, Bron PA, Marco ML, Van Pijkeren JP, O’Conell Motherway M et al. Identification of probiotic effect or molecules: present state and future perspectives. Curr Opin Biotechnol. 2018;49:217–223. doi: https://doi.org/10.1016/j.copbio.2017.10.007.CrossRefGoogle Scholar
  14. Maguire M, Maguire G. Gut dysbiosis, leaky gut, and intestinal epithelial proliferation in neurological disorders: towards the development of a new therapeutic using amino acids, prebiotics, probiotics, and postbiotics. Rev Neurosci. 2019;30(2):179–201. doi: https://doi.org/10.1515/revneuro-2018-0024.CrossRefGoogle Scholar
  15. Nicholson JK, Holmes E, Kinross J, Gibson G, Jia W, Pettersson S. Host-Gut microbiota metabolic interactions. Science. 2012;336(6086):1262–1267. doi: https://doi.org/10.1126/science.1223813.CrossRefPubMedGoogle Scholar
  16. Oleskin AV, Shenderov BA. Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota. Microb Ecol Health Dis. 2016;27:30971. doi: https://doi.org/10.3402/mehd.v27.30971.CrossRefGoogle Scholar
  17. Shenderov BA, Ivanova YaV, Sorokina IM. Complex food product enrichment. PATENT RF 2397246. 2010 (in Russian).Google Scholar
  18. Shenderov BA, Lakhtin MV. Lectins as a new potential category of physiologically active functional food ingredients. Journal of Restorative Medicine & Rehabilitation. 2004;1:33–38 (in Russian).Google Scholar
  19. Shenderov BA. Probiotic (symbiotic) bacterial languages. Anaerobe. 2011;17(6):490–495. doi: https://doi.org/10.1016/j.anaerobe.2011.05.009.CrossRefGoogle Scholar
  20. Singh A, Vishwakarma V, Singhal B. Metabiotics: The Functional Metabolic Signatures of Probiotics: Current State-of-Art and Future Research Priorities — Metabiotics: Probiotics Effector Molecules. Advan Biosci Biotechnol. 2018;9(4):147–189. doi: https://doi.org/10.4236/abb.2018.94012.CrossRefGoogle Scholar
  21. Sitkin SI, Tkachenko EI, Vakhitov TYa. Phylo-metabolic nucleus of an intestinal microbiota. Almanac of clinical medicine. 2015;40:12–34 (in Russian).Google Scholar
  22. Vakhitov TYa, Petrov LN, Bondarenko VM. The concept of a probiotic drug containing original microbial metabolites. Zh Mikrobiol (Moscow). 2005; 5:108–114 (in Russian).Google Scholar
  23. Volkov MYu, Tkachenko EI, Vorobeichikov EV, Sinitsa AV. Bacillus subtilis metabolites as a novel promising probiotic preparations. Zh Mikrobiol (Moscow). 2007;2:75–80 (in Russian).Google Scholar
  24. Vorobeichikov EV, Stepanov AV, Volkov MYu, Vasilenko AZh, Ponomarenko VM, Sinitsa AV. Immunotropic effects of probiotic complex Bactistatin on the background of antibiotics. Antibiotics and chemotherapy. 2008;53(1):3–9 (in Russian).PubMedGoogle Scholar
  25. Yadav M, Verma MK, Chauhan NS. A review of metabolic potential of human gut microbiome in human nutrition. Arch Microbiol. 2018;200(2):203–217. doi: https://doi.org/10.1007/s00203-017-1459-x.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Boris A. Shenderov
    • 1
  • Alexander V. Sinitsa
    • 2
  • Mikhail M. Zakharchenko
    • 2
  • Christine Lang
    • 3
  1. 1.Research Laboratory for Design & Implementation of Personalized Nutrition-Related Product & DietsK.G. Razumovsky University of Technology & ManagementMoscowRussia
  2. 2.Kraft Ltd.St. PetersburgRussia
  3. 3.MBCC GroupBerlinGermany

Personalised recommendations