Health Hazards Associated with Wheat and Gluten Consumption in Susceptible Individuals and Status of Research on Dietary Therapies

  • Sachin RustgiEmail author
  • Peter Shewry
  • Fred Brouns


Wheat accounts for about 20% to over 50% of the total calorie intake of food in regions where it is grown. However, there is a clear perception that disorders related to the consumption wheat are increasing, particularly in Western Europe, North America, and Australia. We consider here the evidence for this perception and discuss strategies and therapies that may be used to reduce the adverse impacts of wheat on the health of susceptible individuals. First, we will introduce the major groups of wheat grain proteins, focusing on those associated with adverse reactions, and discuss in detail the three major adverse reactions triggered by wheat consumption, namely gluten intolerance (celiac disease), wheat allergies, and non-celiac gluten/wheat sensitivity. Finally, will discuss other issues associated with the consumption of gluten-free foods focusing on gluten contamination of products purported to be gluten-free, gluten threshold or tolerance among celiac patients, and food labeling.


Celiac disease Gluten Wheat Wheat allergy Wheat sensitivity 



Rothamsted Research receives grant-aided support from the Biotechnology and Biological Sciences Research Council (BBSRC) of the UK and the work forms part of the Designing Future Wheat strategic programme (BBS/E/C/000I0250). Financial support by NIH grants 1R01 GM080749-01A2, Life Sciences Discovery Fund Grant 3143956-01 and Clemson Faculty Succeeds Grant 15-202-EQUIP-5701-430-1502211 to SR is also gratefully acknowledged. Maastricht University NUTRIM receives grants from the Dutch Topsector AgriFood (TKI 1601P01) and from public private partnerships for the ‘Well on Wheat?’ research consortium addressing the health aspects of wheat consumption and wheat and gluten avoidance (


  1. Afify SM, Pali-Schöll I (2017) Adverse reactions to food: the female dominance – A secondary publication and update. World Allergy Organ J 10:43.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Agostini C, Decsi T, Fewtrell M, Goulet O, Kolacek S, Koletzko B, Fleischer Michaelsen K, Moreno L, Puntis J, Rigo J, Shamir R, Szajewska H, Turck D, van Goudoevero J (2008) Medical Position Paper. Complementary Feeding: A Commentary by the ESPGHAN. Journal of Pediatric Gastroenterology and Nutrition 46:99-110.CrossRefGoogle Scholar
  3. Al-toma A, Visser OJ, van Roessel HM, von Blomberg BM, Verbeek WH, Scholten PE, Ossenkoppele GJ, Huijgens PC, Mulder CJ (2007) Autologous hematopoietic stem cell transplantation in refractory celiac disease with aberrant T cells. Blood 109:2243–2249.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Altenbach SB, Allen PV (2011) Transformation of the US bread wheat “Butte 86” and silencing of omega-5 gliadin genes. GM Crops 2:66-73.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Altenbach SB, Tanaka CK, Seabourn BW (2014) Silencing of omega-5 gliadins in transgenic wheat eliminates a major source of environmental variability and improves dough mixing properties of flour. BMC Plant Biol 14:1.CrossRefGoogle Scholar
  6. Altenbach SB, Vensel WH, Dupont FM (2011) The spectrum of low molecular weight alpha-amylase/protease inhibitor genes expressed in the US bread wheat Butte 86. BMC Research Notes 4:242.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Anderson RP, Degano P, Godkin AJ, Jewell DP, Hill AV (2000) In vivo antigen challenge in celiac disease identifies a single transglutaminase modified peptide as the dominant A-gliadin T-cell epitope. Nat Med 6:337–342.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Anderson RP, van Heel DA, Tye-Din JA, Barnardo M, Salio M, Jewell DP, Hill AVS (2005) T cells in peripheral blood after gluten challenge in coeliac disease. Gut 54:1217–1223.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Arranz-Otaegui A, Carretero LG, Ramsey MN, Fuller DQ, Richter T (2018) Archaebotanical evidence reveals the origins of bread 14.400 years ago in northeastern Jordan. Proc Natl Acad Sci USA 115:7925-7930.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ashraf M (2014) Stress-induced changes in wheat grain composition and quality. Crit Rev Food Sci Nutr 54:1576–1583.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Baccioglu A, Kalpaklıoglu F, Altan G (2017) Review of wheat dependent exercise induced anaphylaxis with two cases, and a new co-factor – myorelaxant. J Immunol Clin Res 4:1045.Google Scholar
  12. Bai JC, Ciacci C (2017) World gastroenterology organisation global guidelines: celiac disease February 2017. J Clin Gastroenterol 51:755–768.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Barrett JS, Gibson PR (2012) Fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAPs) and nonallergic food intolerance: FODMAPs or food chemicals. Therap Adv Gastroenterol 5:261-268.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Battais F, Richard C, Jacquenet S, Denery-Papini S, Moneret-Vautrin DA (2008) Wheat grain allergies: an update on wheat allergens. Eur Ann Allergy Clin Immunol 40:67-76.PubMedPubMedCentralGoogle Scholar
  15. Becker D, Folck A (2006) Inhibierung der α-Gliadingeneexpression in hexaploiden Brotweizen. Getreidetechnologie 30:153-156.Google Scholar
  16. Becker D, Folck A, Knies P, Lörz H, Wieser H (2006) Silencing the a-gliadins in hexaploid bread wheat. In: Lookhart LG, Ng WPK (eds), Gluten Proteins. AACC International, St Paul, MN, pp. 86-89.Google Scholar
  17. Becker D, Wieser H, Koehler P, Folck A, Mühling KH, Zörb C (2012) Protein composition and techno-functional properties of transgenic wheat with reduced α-gliadin content obtained by RNA interference. J Appl Bot Food Qual 85:23-33.Google Scholar
  18. Bellinghausen I, Weigmann B, Zevallos V, Maxeiner J, Reißig S, Waisman A, Schuppan D, Saloga J (2018) Wheat amylase-trypsin inhibitors exacerbate intestinal and airway allergic immune responses in humanized mice. J Allergy Clin Immunol
  19. Berlin C, Berg EL, Briskin MJ, Andrew DP, Kilshaw PJ, Holzmann B, Weissman IL, Hamann A, Butcher EC (1993) Alpha 4 beta 7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 74:185–195.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Bethune MT, Khosla C (2012) Oral enzyme therapy for celiac sprue. Methods Enzymol 502:241-271.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Bethune MT, Strop P, Tang Y, Sollid LM, Khosla C (2006) Heterologous expression, purification, refolding, and structural-functional characterization of EP-B2, a self-activating barley cysteine endoprotease. Chem Biol 13:637–647.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Biesiekierski JR, Muir JG, Gibson PR (2013) Is gluten a cause of gastrointestinal symptoms in people without celiac disease? Curr Allergy Asthma Rep 13:631-638.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Biesiekierski JR, Rosella O, Rose R, Liels K, Barrett JS, Shepherd SJ, Gibson PR, Muir JG (2011). Quantification of fructans, galacto-oligosacharides and other short-chain carbohydrates in processed grains and cereals. J Hum Nutr Diet 24:154-176.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Brans R, Sauer I, Czaja K, Pfützner W, Merk HF (2012) Microarray-based detection of specific IgE against recombinant ω-5-gliadin in suspected wheat-dependent exercise-induced anaphylaxis. Eur J Dermatol 22:358-362.PubMedPubMedCentralGoogle Scholar
  25. Brar P, Lee S, Lewis S, Egbuna I, Bhagat G, Green PH (2007) Budesonide in the treatment of refractory coeliac disease. Am J Gastroenterol 102:2265–2269.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Brew-Appiah RAT (2014) Epigenetic and post-transcriptional elimination of celiac-causing wheat storage proteins. Ph.D. Dissertation, Washington State University, Pullman, pp. 187.Google Scholar
  27. Bromilow S, Gethings LA, Buckley M, Bromley M, Shewry PR, Langridge JI, Clare Mills EN (2017) A curated gluten protein sequence database to support development of proteomics methods for determination of gluten in gluten-free foods. J Proteomics 163:67-75.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Brouns F, Delzenne N, Gibson G (2017) The dietary fibers – FODMAPs controversy. Cereal Foods World 62:98-103.CrossRefGoogle Scholar
  29. Brouns FJPH, van Buul VJ, Shewry PR (2013) Does wheat make us fat and sick? J Cereal Sci 58:209-215.CrossRefGoogle Scholar
  30. Bustamante MÁ, Fernández-Gil MP, Churruca I, Miranda J, Lasa A, Navarro V, Simón E (2017) Evolution of Gluten Content in Cereal-Based Gluten-Free Products: An Overview from 1998 to 2016. Nutrients 9:21.CrossRefGoogle Scholar
  31. Caio G, Volta U, Tovoli F, De Giorgio R (2014) Effect of gluten free diet on immune response to gliadin in patients with non-celiac gluten sensitivity. BMC Gastroenterol 14:26.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Cambra I, Hernández D, Diaz I, Martinez M (2012) Structural basis for specificity of propeptide-enzyme interaction in barley C1A cysteine peptidases. PLoS One 7:e37234.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Camerlengo F, Sestili F, Silvestri M, Colaprico G, Margiotta B, Ruggeri R, Lupi R, Masci S, Lafiandra D (2017) Production and molecular characterization of bread wheat lines with reduced amount of α-type gliadins. BMC Plant Biol 17:248.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Cappetta M, Roth I, Díaz A, Tort J, Roche L (2002) Role of the prosegment of Fasciola hepatica cathepsin L1 in folding of the catalytic domain. Biol Chem 383:1215-1221.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Carbonero P, Garcia-Olmedo F (1999) A multigene family of trypsin/α-amylase inhibitors from cereals. In: Shewry PR, Casey R (eds) Seed proteins. Kluwer Publishing, Surrey, U.K., pp. 617–634.CrossRefGoogle Scholar
  36. Carnevali A, Gianotti A, Benedett S, Tagliamonte MC, Primiterra M, Laghi L, Danesi F, Valli V, Ndaghijimana M, Capozzi F, Canestrari F, Bordoni A (2014) Role of Kamut® brand khorasan wheat in the counteraction of non-celiac wheat sensitivity and oxidative damage. Food Res Int 63:218–226.CrossRefGoogle Scholar
  37. Cataldo F, Montalto G (2007) Celiac disease in the developing countries: a new and challenging public health problem. World J Gastroenterol 13:2153-2159.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Catassi C (2015) Gluten Sensitivity. Ann Nutr Metab 67(suppl 2):16–26.PubMedPubMedCentralGoogle Scholar
  39. Catassi C, Alaedini A, Bojarski C, Bonaz B, Bouma G, Carroccio A, Castillejo G, De Magistris L, Dieterich W, Di Liberto D, Elli L, Fasano A, Hadjivassiliou M, Kurien M, Lionetti E, Mulder CJ, Rostami K, Sapone A, Scherf K, Schuppan D, Trott N, Volta U, Zevallos V, Zopf Y, Sanders DS (2017) The Overlapping Area of Non-Celiac Gluten Sensitivity (NCGS) and Wheat-Sensitive Irritable Bowel Syndrome (IBS): An Update. Nutrients 9:1268.CrossRefGoogle Scholar
  40. Catassi C, Fabiani E, Iacono G, D’Agate C, Francavilla R, Biagi F, Volta U, Accomando S, Picarelli A, De Vitis I, Pianelli G, Gesuita R, Carle F, Mandolesi A, Bearzi I, Fasano A (2007a) A prospective, double-blind, placebo-controlled trial to establish a safe gluten threshold for patients with celiac disease. Am J Clin Nutr 85:160-166.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Catassi C, Fasano A (2008) Celiac disease. In: Arendt EK, Dal Bello F (eds) Gluten-free cereal products and beverages. Elsevier Inc., pp. 1–26.Google Scholar
  42. Catassi C, Gatti S, Lionetti E (2015) World perspective and celiac disease. Epidemiology Dig Dis 33:141–146.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Catassi C, Kryszak D, Louis-Jacques O, Duerksen DR, Hill I, Crowe SE, Brown AR, Procaccini NJ, Wonderly BA, Hartley P, Moreci J, Bennett N, Horvath K, Burk M, Fasano A (2007b) Detection of Celiac disease in primary care: a multicenter case-finding study in North America. Am J Gastroenterol 102:1454-1460.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Catassi C, Rossini M, Rätsch IM, Bearzi I, Santinelli A, Castagnani R, Pisani E, Coppa GV, Giorgi PL (1993) Dose dependent effects of protracted ingestion of small amounts of gliadin in coeliac disease children: a clinical and jejunal morphometric study. Gut 34:1515-1519.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ciacci C, Ciclitira P, Hadjivassiliou M, Kaukinen K, Ludvigsson JF, McGough N, Sanders DS, Woodward J, Leonard JN, Swift GL (2015) The gluten-free diet and its current application in coeliac disease and dermatitis herpetiformis. United European Gastroenterol J 3:121–135.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Ciacci C, Maiuri L, Russo I, Tortora R, Bucci C, Cappello C, Santonicola A, Luciani A, Passananti V, Iovino P (2009) Efficacy of budesonide therapy in the early phase of treatment of adult coeliac disease patients with malabsorption: an in vivo / in vitro pilot study. Clin Exp Pharmacol Physiol 36:1170–1176.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Cianferoni A (2016) Wheat allergy: diagnosis and management. J Asthma Allergy 9:13-25.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Ciclitira PJ, Cerio R, Ellis HJ, Maxton D, Nelufer JM, Macartney JM (1985) Evaluation of a gliadin-containing gluten-free product in coeliac patients. Hum Nutr Clin Nutr 39:303-308.PubMedPubMedCentralGoogle Scholar
  49. Ciclitira PJ, Evans DJ, Fagg NL, Lennox ES, Dowling RH (1984) Clinical testing of gliadin fractions in coeliac patients. Clin Sci (Lond) 66:357-364.CrossRefGoogle Scholar
  50. Ciclitira PJ, Hunter JO, Lennox ES (1980a) Clinical testing of bread made from nullisomic-6A wheats in celiac patients. Lancet 2:234-236.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Ciclitira PJ, Hunter JO, Lennox ES (1980b) Clinical testing in celiac patients of bread made from wheats deficient in some α-gliadins. Clinical Sci 59:25.CrossRefGoogle Scholar
  52. Colomba MS, Gregorini A (2012) Are ancient durum wheats less toxic to celiac patients? A study of α-gliadin from Graziella Ra and Kamut. ScientificWorldJournal 2012:837416.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Comino I, Moreno M, Real A, Rodríguez-Herrera A, Barro F, Sousa C (2013) The gluten-free diet: Testing alternative cereals tolerated by celiac patients. Nutrients 5:4250-4268.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Cook F, Hughes N, Nibau C, Orman-Ligeza B, Schatlowski N, Uauy C, Trafford K (2018) Barley lys3 mutants are unique amongst shrunken-endosperm mutants in having abnormally large embryos. J Cereal Sci 82:16-24.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Cordain L (1999) Cereal grains: humanity’s double-edged sword. World Rev Nutr Diet 84:19–73.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Croese J, O’Neil J, Masson J, Cooke S, Melrose W, Pritchard D, Speare R (2006) A proof of concept study establishing Necator americanus in Crohn’s patients and reservoir donors. Gut 55:136–137.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Cukrowska B, Sowińska A, Bierła JB, Czarnowska E, Rybak A, Grzybowska-Chlebowczyk U (2017) Intestinal epithelium, intraepithelial lymphocytes and the gut microbiota - Key players in the pathogenesis of celiac disease. World J Gastroenterol 23:7505–7518.CrossRefPubMedPubMedCentralGoogle Scholar
  58. De Palma G, Nadal I, Carmen Collado M, Sanz Y, Collado M (2009) Effects of a gluten-free diet on gut microbiota and immune function in healthy adult human subjects. Br J Nutr 102:1154–1160.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Dewar DH, Amato M, Ellis HJ, Pollock EL, Gonzalez-Cinca N, Wieser H, Ciclitira PJ (2006) The toxicity of high molecular weight glutenin subunits of wheat to patients with coeliac disease. Eur J Gastroenterol Hepatol 18:483-491.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Di Sabatino A, Rovedatti L, Rosado MM, Carsetti R, Corazza GR, MacDonald TT (2009) Increased expression of mucosal addressin cell adhesion molecule 1 in the duodenum of patients with active celiac disease is associated with depletion of integrin alpha4beta7-positive T cells in blood. Hum Pathol 40:699–704.CrossRefPubMedPubMedCentralGoogle Scholar
  61. DiGiacomo DV, Tennyson CA, Green PH, Demmer RT (2013) Prevalence of gluten-free diet adherence among individuals without celiac disease in the USA: results from the Continuous National Health and Nutrition Examination Survey 2009–2010. Scand J Gastroenterol 48:921-925.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Do AB, Khuda SE, Sharma GM (2018) Undeclared food allergens and gluten in commercial food products analyzed by ELISA. J AOAC Int 101:23-35.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Dupont FM, Vensel WH, Tanaka CK, Hurkman WJ, Altenbach SB (2011) Deciphering the complexities of the wheat flour proteome using quantitative two-dimensional electrophoresis, three proteases and tandem mass spectrometry Proteome Sci 9:10.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Edwards JC, Szczepanski L, Szechinski J, Filipowicz-Sosnowska A, Emery P, Close DR, Stevens RM, Shaw T (2004) Efficacy of B-celltargeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med 350:2572–2581.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Ehren J, Moron B, Martin E, Bethune MT, Gray GM, Khosla C (2009) A food-grade enzyme preparation with modest gluten detoxification properties. PLoS ONE 4:e6313.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Ejderhamn J, Veesess B, Strandvik B (1988) The long term effect of continual ingestion of wheat starch-containing gluten-free products in celiac patients. In: Kumar PJ (ed) Coeliac disease: one hundred years. Leeds, United Kingdom, Leeds University Press, pp. 294–297.Google Scholar
  67. Engstrom N, Saenz-Mendez P, Scheers J, Scheers N (2017) Towards Celiac-safe foods: Decreasing the affinity of transglutaminase 2 for gliadin by addition of ascorbyl palmitate and ZnCl2 as detoxifiers. Sci Rep 7:77.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Escarnot E, Gofflot S, Sinnaeve G, Dubois B, Bertin P, Mingeot D (2018) Reactivity of gluten proteins from spelt and bread wheat accessions towards A1 and G12 antibodies in the framework of celiac disease. Food Chem 268:522–532.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Farage P, de Medeiros Nóbrega YK, Pratesi R, Gandolfi L, Assunção P, Zandonadi RP (2017) Gluten contamination in gluten-free bakery products: a risk for coeliac disease patients. Public Health Nutr 20:413-416.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Fasano A (2012) Leaky gut and autoimmune diseases. Clinic Rev Allerg Immunol 42:71-78.CrossRefGoogle Scholar
  71. Frisoni M, Corazza GR, Lafiandra D, De Ambroggio E, Filipponi C, Bonvicini F, Borasio E, Porcheddu E, Gasbarrini G (1995) Wheat deficient in gliadins: promising tool for coeliac disease. Gut 36:375-378.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Fritschy F, Windemann H, Baumgarten E (1985) Bestimmung von Weizen gliadinen in Lebensmitteln mittels ELISA [Determination of wheat gliadins in foods by ELISA]. Z Lebensm Unters Forsch 181: 379-385.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Gass J, Bethune MT, Siegel M, Spencer A, Khosla C (2007) Combination enzyme therapy for gastric digestion of dietary gluten in patients with celiac sprue. Gastroenterology 133:472-480CrossRefPubMedPubMedCentralGoogle Scholar
  74. Gass J, Khosla C (2007) Prolyl endopeptidases. Cell Mol Life Sci 64:345-355.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Gélinas P, Gagnon F (2018) Inhibitory activity towards human α-amylase in wheat flour and gluten. Food Sci Technol 53:467-474.Google Scholar
  76. Gelinas P, McKinnon C (2016) Gluten weight in ancient and modern wheat and the reactivity of epitopes towards R5 and G12 monoclonal antibodies. Int J Food Sci Technol 51:1801–1810.CrossRefGoogle Scholar
  77. Gessendorfer B, Hartmann G, Wieser H, Koehler P (2011) Determination of celiac disease-specific peptidase activity of germinated cereals. Eu Food Res Technol 232:205–209.CrossRefGoogle Scholar
  78. Ghosh S, Goldin E, Gordon FH, Malchow HA, Rask-Madsen J, Rutgeerts P, Vyhnálek P, Zádorová Z, Palmer T, Donoghue S; Natalizumab Pan-European Study Group (2003) Natalizumab for active Crohn’s disease. N Engl J Med 348:24–32.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Gianfrani C, Camarca A, Mazzarella G, Di Stasio L, Giardullo N, Ferranti P, Picariello G, Rotondi Aufiero V, Picascia S, Troncone R, Pogna N, Auricchio S, Mamone G (2015) Extensive in vitro gastrointestinal digestion markedly reduces the immune-toxicity of Triticum monococcum wheat: Implication for celiac disease. Mol Nutr Food Res 59:1844-1854.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Gibert A, Espadaler M, Angel Canela M, Sánchez A, Vaqué C, Rafecas M (2006) Consumption of gluten-free products: should the threshold value for trace amounts of gluten be at 20, 100 or 200 p.p.m.? Eur J Gastroenterol Hepatol 18:1187-1195.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Gil-Humanes J, Piston F, Altamirano-Fortoul R, Real A, Comino I, Sousa A, Rosell CM, Barro F (2014) Reduced-gliadin wheat bread: an alternative to the gluten-free diet for consumers suffering gluten-related pathologies. PLoS One 9:e90898.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Gil-Humanes J, Piston F, Hernando A, Alvarez JB, Shewry PR, Barro F (2008) Silencing of γ-gliadins by RNA interference (RNAi) in bread wheat. J Cereal Sci 48:565-568.CrossRefGoogle Scholar
  83. Gil-Humanes J, Pistón F, Shewry PR, Tosi P, Barro F (2011) Suppression of gliadins results in altered protein body morphology in wheat. J Exp Bot 62:4203-4213.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Gil-Humanes J, Piston F, Tollefsen S, Sollid LM, Barro F (2010) Effective shutdown in the expression of celiac disease-related wheat gliadin T-cell epitopes by RNA interference. Proc Natl Acad Sci USA 107:17023-17028.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Gilissen LJWJ, van der Meer IM, Smulders MJM (2014) Reducing the incidence of allergy and intolerance to cereals. J Cereal Sci 59:337-353.CrossRefGoogle Scholar
  86. Gillett HR, Arnott ID, McIntyre M, Campbell S, Dahele A, Priest M, Jackson R, Ghosh S (2002) Successful infliximab treatment for steroid-refractory celiac disease: a case report. Gastroenterology 122:800–805.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Godfrey D, Hawkesford MJ, Powers SJ, Millar S, Shewry PR (2010) Effects of crop nutrition on wheat grain composition and end use quality. J Agric Food Chem 58:3012–3021.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Goryunova SV, Salentijn EM, Chikida NN, Kochieva EZ, van der Meer IM, Gilissen LJ, Smulders MJ (2012) Expansion of the gamma-gliadin family in Aegilops and Triticum. BMC Evol Biol 12:215.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Gregorini A, Colomba M, Ellis HJ, Ciclitira PJ (2009) Immunogenicity characterization of two ancient wheat α-gliadin peptides related to coeliac disease. Nutrients 1:276-290.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Hadjivassiliou M, Sanders D, Grünewald RA, Woodroofe N, Boscolo S, Aeschlimann D (2010) Gluten sensitivity: from gut to brain. Lancet Neurol 9:318–330.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Hadjivassiliou M, Sanders DD, Aeschlimann DP (2015) Gluten-Related Disorders: Gluten Ataxia. Dig Dis 33:264–268.CrossRefPubMedPubMedCentralGoogle Scholar
  92. Hajas L, Scherf KA, Török K, Bugyi Z, Schall E, Poms RE, Koehler P, Tömösközi S (2018) Variation in protein composition among wheat (Triticum aestivum L.) cultivars to identify cultivars suitable as reference material for wheat gluten analysis. Food Chem 267:387–394.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, Bar-Or A, Panzara M, Sarkar N, Agarwal S, Langer-Gould A, Smith CH; HERMES Trial Group (2008) B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 358:676–688.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Henry AG, Brooks AS, Piperno DR (2011) Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; Spy I and II, Belgium). Proc Natl Acad Sci USA 108:486–491.CrossRefPubMedPubMedCentralGoogle Scholar
  95. Henry AG, Brooks AS, Piperno DR (2014) Plant foods and the dietary ecology of Neanderthals and early modern humans. J Human Evolution 69:44-54.CrossRefGoogle Scholar
  96. Hernando A, Mujico JR, Mena MC, Lombardía M, Méndez E (2008) Measurement of wheat gluten and barley hordeins in contaminated oats from Europe, the United States and Canada by Sandwich R5 ELISA. Eur J Gastroenterol Hepatol 20:545-554.CrossRefPubMedPubMedCentralGoogle Scholar
  97. Herold KC, Gitelman S, Greenbaum C, Puck J, Hagopian W, Gottlieb P, Sayre P, Bianchine P, Wong E, Seyfert-Margolis V, Bourcier K, Bluestone JA; Immune Tolerance Network ITN007AI Study Group. (2009) Treatment of patients with new onset Type 1 diabetes with a single course of anti-CD3 mAb Teplizumab preserves insulin production for up to 5 years. Clin Immunol 132:166–173.CrossRefPubMedPubMedCentralGoogle Scholar
  98. Hischenhuber C, Crevel R, Jarry B, Mäki M, Moneret-Vautrin DA, Romano A, Troncone R, Ward R (2006) Review article: safe amounts of gluten for patients with wheat allergy or coeliac disease. Aliment Pharmacol Ther 23:559-575.CrossRefPubMedPubMedCentralGoogle Scholar
  99. Huebener S, Tanaka CK, Uhde M, Zone JJ, Vensel WH, Kasarda DD, Beams L, Briani C, Green PH, Altenbach SB, Alaedini A (2015) Specific nongluten proteins of wheat are novel target antigens in celiac disease humoral response. J Proteome Res14:503−511.CrossRefPubMedPubMedCentralGoogle Scholar
  100. Huibregtse IL, Marietta EV, Rashtak S, Koning F, Rottiers P, David CS, van Deventer SJ, Murray JA (2009) Induction of antigen specific tolerance by oral administration of Lactococcus lactis delivered immunodominant DQ8-restricted gliadin peptide in sensitized nonobese diabetic Abo DQ8 transgenic mice. J Immunol 183:2390–2396.CrossRefPubMedPubMedCentralGoogle Scholar
  101. Inomata N (2009) Wheat allergy. Curr Opin Allergy Clin Immunol 9:238–243.CrossRefPubMedPubMedCentralGoogle Scholar
  102. International Wheat Genome Sequencing Consortium (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191.CrossRefGoogle Scholar
  103. Ivarsson A1, Myléus A, Norström F, van der Pals M, Rosén A, Högberg L, Danielsson L, Halvarsson B, Hammarroth S, Hernell O, Karlsson E, Stenhammar L, Webb C, Sandström O, Carlsson A (2013) Prevalence of childhood celiac disease and changes in infant feeding. Pediatrics 131:e687-e694.CrossRefGoogle Scholar
  104. Janssen FW, Hägele GH, de Baaij JA (1991) Gluten free products, the Dutch experience. In: Mearin ML, Mulder CJJ (eds) Coeliac Disease. Dordrech: Kluwer Academic, pp. 95–100.CrossRefGoogle Scholar
  105. Jenkins JA, Griffiths-Jones S, Shewry PR, Breiteneder H, Mills ENC (2005) Structural relatedness of plant food allergens with specific reference to cross-reactive allergens: an in silico analysis. J Allergy Clin Immunol 115:163–170.CrossRefPubMedPubMedCentralGoogle Scholar
  106. Jouanin A, Gilissen LJWJ, Boyd LA, Cockram J, Leigh FJ, Wallington EJ, van den Broeck HC, van der Meer IM, Schaart JG, Visser RGF, Smulders MJM (2018) Food processing and breeding strategies for coeliac-safe and healthy wheat products. Food Res Int1 10:11-21.Google Scholar
  107. Juhász A, Belova T, Florides CG, Maulis C, Fischer I, Gell G, Birinyi Z, Ong J, Keeble-Gagnère G, Maharajan A, Ma W, Gibson P, Jia J, Lang D, Mayer KFX, Spannagl M, International Wheat Genome Sequencing Consortium, Tye-Din JA, Appels R, Olsen O-A (2018) Genome mapping of seed-borne allergens and immunoresponsive proteins in wheat. Sci Adv 4:eaar8602.CrossRefPubMedPubMedCentralGoogle Scholar
  108. Juhász A, Haraszi R, Maulis C (2015) ProPepper: a curated database for identification and analysis of peptide and immune-responsive epitope composition of cereal grain protein families. Database 2015:1–16.Google Scholar
  109. Junker Y, Zeissig S, Kim SJ, Barisani D, Wieser H, Leffler DA, Zevallos V, Libermann TA, Dillon S, Freitag TL, Kelly CP, Schuppan D (2012) Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of toll-like receptor 4. J Exp Med 209:2395-2408.CrossRefPubMedPubMedCentralGoogle Scholar
  110. Kabbani TA, Goldberg A, Kelly CP, Pallav K, Tariq S, Peer A, Hansen J, Dennis M, Leffler DA (2012) Body mass index and the risk of obesity in coeliac disease treated with the gluten-free diet. Aliment Pharmacol Ther 35:723-729.CrossRefPubMedPubMedCentralGoogle Scholar
  111. Kapoerchan VV, Wiesner M, Overhand M, van der Marel GA, Koning F, Overkleeft HS (2008) Design of azidoproline containing gluten peptides to suppress CD4+ T-cell responses associated with coeliac disease. Bioorg Med Chem 16:2053–2062.CrossRefPubMedPubMedCentralGoogle Scholar
  112. Kasarda DD (2013) Can an increase in celiac disease be attributed to an increase in the gluten content of wheat as a consequence of wheat breeding? J Agric Food Chem 61:1155-1159.CrossRefPubMedPubMedCentralGoogle Scholar
  113. Kasarda DD, Adalsteins E, Lew EJ-L, Lazo GR, Altenbach SB (2013) Farinin:characterisation of a novel wheat endosperm protein belonging to the prolamin superfamily J Agric Food Chem 61:2407-2417.CrossRefPubMedPubMedCentralGoogle Scholar
  114. Kaukinen K, Collin P, Holm K, Rantala I, Vuolteenaho N, Reunala T, Mäki M (1999) Wheat starch-containing gluten-free flour products in the treatment of coeliac disease and dermatitis herpetiformis. A long-term follow-up study. Scand J Gastroenterol 34:163-169.CrossRefPubMedPubMedCentralGoogle Scholar
  115. Keech CL, Dromey J, Chen Z, Anderson RP, McCluskey J (2009) Immune tolerance induced by peptide immunotherapy in an HLA-DQ2-dependent mouse model of gluten immunity. Gastroenterology 136:A355.CrossRefGoogle Scholar
  116. Kneen E, Sandstedt RM (1946) Distribution and general properties of an amylase inhibitor in cereals. Arch Biochem 9:235–249.PubMedPubMedCentralGoogle Scholar
  117. Koning F (2012) Celiac disease: quantity matters. Semin Immunopathol 34:541–549.CrossRefPubMedPubMedCentralGoogle Scholar
  118. Kotaniemi-Syrjänen A, Palosuo K, Jartti T, Kuitunen M, Pelkonen AS, Mäkelä MJ (2010) The prognosis of wheat hypersensitivity in children. Pediatr Allergy Immunol 21(2 Pt 2):e421-e428.CrossRefPubMedPubMedCentralGoogle Scholar
  119. Lähdeaho ML, Kaukinen K, Laurila K, Vuotikka P, Koivurova OP, Kärjä-Lahdensuu T, Marcantonio A, Adelman DC, Mäki M (2014) Glutenase ALV003 attenuates gluten-induced mucosal injury in patients with celiac disease. Gastroenterology 146:1649-1658.CrossRefPubMedPubMedCentralGoogle Scholar
  120. Lebwohl B, Sanders DS, Green PHR (2018) Coeliac disease. Lancet 391:70-81.CrossRefPubMedPubMedCentralGoogle Scholar
  121. Lee HJ, Anderson Z, Ryu D (2014) Gluten Contamination in Foods Labeled as ‘Gluten Free’ in the United States. J Food Prot 77:1830–1833.CrossRefPubMedPubMedCentralGoogle Scholar
  122. Lee L, Zhang Y, Ozar B, Sensen CW, Schriemer DC (2016) Carnivorous Nutrition in Pitcher Plants (Nepenthes spp.) via an Unusual Complement of Endogenous Enzymes. J Proteome Res 15:3108-3117.CrossRefPubMedPubMedCentralGoogle Scholar
  123. Leonard MM, Sapone A, Catassi C, Fasano A (2017) Celiac disease and nonceliac gluten sensitivity: A review. JAMA 318:647-656.CrossRefPubMedPubMedCentralGoogle Scholar
  124. Lionetti E, Gatti S, Pulvirenti A, Catassi C (2015) Celiac disease from a global perspective. Best Pract Res Clin Gastroenterol 29:365-379.CrossRefPubMedPubMedCentralGoogle Scholar
  125. Ludvigsson JF, Fasano A (2012) Timing of introduction of gluten and celiac disease risk. Ann Nutr Metab 60 Suppl 2:22-29.CrossRefPubMedPubMedCentralGoogle Scholar
  126. Ludvigsson JF, Leffler DA, Bai JC, Biagi F, Fasano A, Green PH, Hadjivassiliou M, Kaukinen K, Kelly CP, Leonard JN, Lundin KE, Murray JA, Sanders DS, Walker MM, Zingone F, Ciacci C (2013) The Oslo definitions for coeliac disease and related terms. Gut 62:43-52.CrossRefPubMedPubMedCentralGoogle Scholar
  127. Mamone G, Picariello G, Addeo F, Ferranti P (2011) Proteomic analysis in allergy and intolerance to wheat products. Expert Rev Proteomics 8:95-115.CrossRefPubMedPubMedCentralGoogle Scholar
  128. Marion D, Douliez J-P, Gautier M-F, Elmorjani K (2004) Plant lipid transfer proteins: relationships between allergenicity and structural, biological and technological properties. In: Mills ENC, Shewry PR (eds), Plant Food Allergens, Oxford: Blackwell Publishing, pp. 57-69.Google Scholar
  129. Martin J, Geisel T, Maresch C, Krieger K, Stein J (2013) Inadequate nutrient ixntake in patients with celiac disease: results from a German dietary survey. Digestion 87:240-246.CrossRefPubMedPubMedCentralGoogle Scholar
  130. Matsuda T, Nakase M, Alvarez AM, Izumi H, Kato T, Tada Y (2006) Rice-seed allergenic proteins and hypoallergenic rice. In: Mine Y, Shahidi F (eds) Nutraceutical proteins and peptides in health and disease, CRC Press, pp. 493–511.Google Scholar
  131. McCarville JL, Caminero A, Verdu EF (2015) Celiac treatments, adjuvant therapies and alternatives to the gluten-free diet. In: Arranz E, Fernández-Bañares F, Rosell CM, Rodrigo L, Peña AS (eds) Advances in the understanding of gluten related pathology and the Evolution of Gluten-Free Foods. OmniaScience, Barcelona, Spain, pp. 223-253.CrossRefGoogle Scholar
  132. Mei HE, Frölich D, Giesecke C, Loddenkemper C, Reiter K, Schmidt S, Feist E, Daridon C, Tony HP, Radbruch A, Dörner T (2010) Steady state generation of mucosal IgA+ plasmablasts is not abrogated by B cell depletion therapy with rituximab. Blood 116:5181–5190.CrossRefPubMedPubMedCentralGoogle Scholar
  133. Metakovsky EV, Davidov SD, Chernakov VM, Upelniek VP (1993) Gliadin allele identification in common wheat. III. Frequency of occurrence and appearance of spontaneous mutations at the gliadin-coding loci. J Genet Breed 47:221-236.Google Scholar
  134. Miranda J, Simón E (2017) Gluten Content Change Over the Two Last Decades. In: E. Simón et al. (eds) Nutritional and Analytical Approaches of Gluten-Free Diet in Celiac Disease, SpringerBriefs in Food, Health, and Nutrition, Springer, pp. 47-57.Google Scholar
  135. Mitea C, Havenaar R, Drijfhout JW, Edens L, Dekking L, Koning F (2008) Efficient degradation of gluten by a prolyl endoprotease in a gastrointestinal model: Implications for coeliac disease. Gut 57:25–32.CrossRefPubMedPubMedCentralGoogle Scholar
  136. Mitea C, Salentijn EM, van Veelen P, Goryunova SV, van der Meer IM, van den Broeck HC, Mujico JR, Montserrat V, Gilissen LJ, Drijfhout JW, Dekking L, Koning F, Smulders MJ (2010) A universal approach to eliminate antigenic properties of alpha-gliadin peptides in celiac disease. PloS One 5:e15637.CrossRefPubMedPubMedCentralGoogle Scholar
  137. Moehs CP, Austil WJ, Holm A, Large TAG, Loeffler D, Mullenberg J, Schnable PS, Skinner W, van Boxtel J, Wu L, McGuire C (2018) Development of reduced gluten wheat enabled by determination of the genetic basis of the lys3a low hordein barley mutant. bioRxiv
  138. Molberg Ø, Uhlen AK, Jensen T, Flæte NS, Fleckenstein B, Arentz-Hansen H, Raki M, Lundin KEA, Sollid LM (2005) Mapping of gluten T-cell epitopes in the bread wheat ancestors: implications for celiac disease. Gasteroenterology 128:393-401.CrossRefGoogle Scholar
  139. Morris CF (2002) Puroindolines: The molecular genetic basis of wheat grain hardness. Plant Mol Biol 48:633-647.CrossRefPubMedPubMedCentralGoogle Scholar
  140. Munck L (1992) The case of high-lysine barley breeding. In: Shewry PR (ed), Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology. CAB International, Wallingford Oxon, pp. 573-601.Google Scholar
  141. Nadal I, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y (2007) Imbalance in the composition of the duodenal microbiota of children with coeliac disease. J Med Microbiol 56:1669–1674.CrossRefPubMedPubMedCentralGoogle Scholar
  142. Nambu M (2006) Rice Allergy. Pediatrics 117:2331.CrossRefPubMedPubMedCentralGoogle Scholar
  143. Nistal E, Caminero A, Herrán AR, Pérez-Andres J, Vivas S, Ruiz de Morales JM, Sáenz de Miera LE, Casqueiro J (2016) Study of duodenal bacterial communities by 16S rRNA gene analysis in adults with active celiac disease vs non-celiac disease controls. J Appl Microbiol 120:1691–1700.CrossRefPubMedPubMedCentralGoogle Scholar
  144. Nistal E, Caminero A, Vivas S, Ruiz de Morales JM, Sáenz de Miera LE, Rodríguez-Aparicio LB, Casqueiro J (2012) Differences in faecal bacteria populations and faecal bacteria metabolism in healthy adults and celiac disease patients. Biochimie 94:1724–1729.CrossRefPubMedPubMedCentralGoogle Scholar
  145. Olexová L, Dovičovičová L, Švec M, Siekel P, Kuchta T (2006) Detection of gluten-containing cereals in flours and “gluten-free” bakery products by polymerase chain reaction. Food Control 17:234-237.CrossRefGoogle Scholar
  146. Olivares M, Walker AW, Capilla A, Benítez-Páez A, Palau F, Parkhill J, Castillejo G, Sanz Y (2018) Gut microbiota trajectory in early life may predict development of celiac disease. Microbiome 6:36.CrossRefPubMedPubMedCentralGoogle Scholar
  147. Ortiz-Sánchez JP, Cabrera-Chávez F, de la Barca AM (2013) Maize prolamins could induce a gluten-like cellular immune response in some celiac disease patients. Nutrients 5:4174-4183.CrossRefPubMedPubMedCentralGoogle Scholar
  148. Osborne TB (1924) The vegetable proteins, 2nd edition. Longmans Green & Co, London, UK.Google Scholar
  149. Osorio C, Wen N, Gemini R, Zemetra R, von Wettstein D, Rustgi S (2012) Targeted modification of wheat grain protein to reduce the content of celiac causing epitopes. Funct Integr Genomics 12:417-438.CrossRefPubMedPubMedCentralGoogle Scholar
  150. Osorio CE, Wen N, Mejias JH, Liu B, Reinbothe S, von Wettstein D, Rustgi S (2019) Development of wheat genotypes expressing a glutamine-specific endoprotease from barley and a prolyl endopeptidase from Flavobacterium meningosepticum or Pyrococcus furiosus as a potential remedy to celiac disease. Funct Integr Genomics 19:123–136.Google Scholar
  151. Panda R, Taylor SL, Goodman RE (2010) Development of a Sandwich Enzyme-Linked Immunosorbent Assay (ELISA) for Detection of Buckwheat Residues in Food. J Food Sci 75:T110-T117.CrossRefPubMedPubMedCentralGoogle Scholar
  152. Pasha I, Saeed F, Tauseef Sultan M, Batool R, Aziz M, Ahmed W (2016) Wheat allergy and intolerance; Recent updates and perspectives. Crit Rev Food Sci Nutr 56:13–24.CrossRefPubMedPubMedCentralGoogle Scholar
  153. Pastorello EA, Farioli L, Conti A, Pravettoni V, Bonomi S, Iametti S, Fortunato D, Scibilia J, Bindslev-Jensen C, Ballmer-Weber B, Robino AM, Ortolani C (2007) Wheat IgE-mediated food allergy in European patients: alpha-amylase inhibitors, lipid transfer proteins and low-molecular-weight glutenins. Allergenic molecules recognized by double-blind, placebo-controlled food challenge. International archives of allergy and immunology 144:10–22.CrossRefPubMedPubMedCentralGoogle Scholar
  154. Paterson BM, Lammers KM, Arrieta MC, Fasano A, Meddings JB (2007) The safety, tolerance, pharmacokinetic and pharmacodynamic effects of single doses of AT-1001 in coeliac disease subjects: a proof of concept study. Aliment Pharmacol Ther 26:757–766.CrossRefPubMedPubMedCentralGoogle Scholar
  155. Peräaho M, Kaukinen K, Paasikivi K, Sievänen H, Lohiniemi S, Mäki M, Collin P (2003) Wheat-starch-based gluten-free products in the treatment of newly detected coeliac disease: prospective and randomized study. Aliment Pharmacol Ther 17:587–594.CrossRefPubMedPubMedCentralGoogle Scholar
  156. Perez-Gregorio MR, Días R, Mateus N, de Freitas V (2018) Identification and characterization of proteolytically resistant gluten-derived peptides Food Funct 9:1726–1735.CrossRefPubMedPubMedCentralGoogle Scholar
  157. Pinier M, Verdu EF, Nasser-Eddine M, David CS, Vézina A, Rivard N, Leroux JC (2009) Polymeric binders suppress gliadin-induced toxicity in the intestinal epithelium. Gastroenterology 136:288–298.CrossRefPubMedPubMedCentralGoogle Scholar
  158. Pinto-Sánchez MI, Verdu EF, Liu E, Bercik P, Green PH, Murray JA, Guandalini S, Moayyedi P (2016) Gluten introduction to infant feeding and risk of celiac disease: Systematic review and meta-analysis. J Pediatr 168:132–43.CrossRefPubMedPubMedCentralGoogle Scholar
  159. Piston F, Gil-Humanes J, Rodríguez-Quijano M, Barro F (2011) Down-regulating γ-gliadins in bread wheat leads to non-specific increases in other gluten proteins and has No major effect on dough gluten strength. PLoS One 6:e24754.CrossRefPubMedPubMedCentralGoogle Scholar
  160. Pizzuti D, Buda A, D’Odorico A, D’Incà R, Chiarelli S, Curioni A, Martines D (2006) Lack of intestinal mucosal toxicity of Triticum monococcum in coeliac disease patients. Scand J Gastroenterol 41:1305–1311.CrossRefPubMedPubMedCentralGoogle Scholar
  161. Pogna NE, Monari AM, Cacciatori P, Redaelli R, Ng PKW (1998) Development and characterization of bread wheat lines lacking chromosome 1B-, 1D-, 6A- and 6D-encoded prolamins. In: Proc. IXth Intern. Wheat Genetics Symposium, Saskatoon, Saskatchewan, Canada, pp. 265-268.Google Scholar
  162. Pontieri P, Mamone G, De Caro S, Tuinstra MR, Roemer E, Okot J, De Vita P, Ficco DB, Alifano P, Pignone D, Massardo DR, Del Giudice L (2013) Sorghum, a healthy and gluten-free food for celiac patients as demonstrated by genome, biochemical, and immunochemical analyses. J Agric Food Chem 61:2565-2571.CrossRefPubMedPubMedCentralGoogle Scholar
  163. Prandi B, Faccini A, Tedeschi T, Galaverna G, Sforza S (2013) LC/MS analysis of proteolytic peptides in wheat extracts for determining the content of the allergen amylase/trypsin inhibitor CM3: Influence of growing area and variety. Food Chem140:141-146.CrossRefPubMedPubMedCentralGoogle Scholar
  164. Prandi B, Tedeschi T, Folloni S, Galaverna G, Sforza S (2017) Peptides from gluten digestion: A comparison between old and modern wheat varieties. Food Res Int 91:92–102.CrossRefPubMedPubMedCentralGoogle Scholar
  165. Ramírez-González RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini L, Davey M, Jacobs J, van Ex F, Pasha A, Khedikar Y, Robinson SJ, Cory AT, Florio T, Concia L, Juery C, Schoonbeek H, Steuernagel B, Xiang D, Ridout CJ, Chalhoub B, Mayer KFX, Benhamed M, Latrasse D, Bendahmane A; International Wheat Genome Sequencing Consortium, Wulff BBH, Appels R, Tiwari V, Datla R, Choulet F, Pozniak CJ, Provart NJ, Sharpe AG, Paux E, Spannagl M, Bräutigam A, Uauy C (2018) The transcriptional landscape of polyploid wheat. Science 361:eaar6089.Google Scholar
  166. Rashtak S, Murray JA (2012) Review article: coeliac disease, new approaches to therapy. Aliment Pharmacol Ther 35:768-781.CrossRefPubMedPubMedCentralGoogle Scholar
  167. Redaelli R, Metakovsky EV, Davydov SD, Pogna NE (1994) Two-dimensional mapping of gliadins using biotypes and null mutants of common wheat cultivar Saratovskaya 29. Hereditas 121:131-137.CrossRefGoogle Scholar
  168. Reinisch W, de Villiers W, Bene L, Simon L, Rácz I, Katz S, Altorjay I, Feagan B, Riff D, Bernstein CN, Hommes D, Rutgeerts P, Cortot A, Gaspari M, Cheng M, Pearce T, Sands BE (2010) Fontolizumab inmoderate to severe Crohn’s disease: a phase 2, randomized, double-blind, placebo-controlled, multiple-dose study. Inflamm Bowel Dis 16:233–242.CrossRefPubMedPubMedCentralGoogle Scholar
  169. Ribeiro M, Nunes FM, Rodriguez-Quijano M, Carrillo JM, Branlard G, Igrejas G (2018) Next-generation therapies for celiac disease: The gluten-targeted approaches. Trends Food Sci Technol 75:56-71.CrossRefGoogle Scholar
  170. Ribeiro M, Rodriguez-Quijano M, Nunes FM, Carrillo JM, Branlard G, Igrejas G (2016) New insights into wheat toxicity: Breeding did not seem to contribute to a prevalence of potential celiac disease’s immunostimulatory epitopes. Food Chem 213:8–18.CrossRefPubMedPubMedCentralGoogle Scholar
  171. Rosella CM, Barro F, Sousa C, Mena MC (2014) Cereals for developing gluten-free products and analytical tools for gluten detection. J Cereal Sci 59:354-364.CrossRefGoogle Scholar
  172. Rubio-Tapia A, Ludvigsson JF, Brantner TL, Murray JA, Everhart JE (2012) The prevalence of celiac disease in the United States. Am J Gastroenterol 107:1538-1544.CrossRefPubMedPubMedCentralGoogle Scholar
  173. Rustgi S, Wen N, Osorio C, Brew-Appiah RAT, Wen S, Gemini R, Mejias JH, Ankrah N, Moehs CP, von Wettstein D (2014) Natural dietary therapies for the ‘gluten syndrome’, Scientia Danica, Series B, Biologica 3:1-87.Google Scholar
  174. Salcedo G, Sanchez-Monge R, Garcia-Casado G, Armentia A, Gomez L, Barber D (2004) The cereal α-amylase/trypsin inhibitor family associated with bakers’ asthma and food allergy. In Mills ENC, Shewry PR (eds) Plant food allergens. Blackwell Science, Oxford U.K., pp. 70-86.Google Scholar
  175. Salentijn EM, Esselink DG, Goryunova SV, van der Meer IM, Gilissen LJ, Smulders MJ (2013) Quantitative and qualitative differences in celiac disease epitopes among durum wheat varieties identified through deep RNA-amplicon sequencing. BMC Genomics 14:905.CrossRefPubMedPubMedCentralGoogle Scholar
  176. Salentijn EM, Goryunova SV, Bas N, van der Meer IM, van den Broeck HC, Bastien T, Gilissen LJ, Smulders MJ (2009) Tetraploid and hexaploid wheat varieties reveal large differences in expression of alpha-gliadins from homoeologous Gli-2 loci. BMC Genomics 10:48.CrossRefPubMedPubMedCentralGoogle Scholar
  177. Salmi M, Jalkanen S (1999) Molecules controlling lymphocyte migration to the gut. Gut 45:148–153.CrossRefPubMedPubMedCentralGoogle Scholar
  178. Sanchez de la Hoz P, Castagnaro A, Carbonero P (1994) Sharp divergence between wheat and barley at loci encoding novel members of the trypsin/alpha-amylase inhibitors family. Plant Mol Biol 26:1231-1236.CrossRefPubMedPubMedCentralGoogle Scholar
  179. Sánchez-León S, Gil-Humanes J, Ozuna CV, Giménez MJ, Sousa C, Voytas DF, Barro F (2018) Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol J 16:902-910.CrossRefPubMedPubMedCentralGoogle Scholar
  180. Sandborn WJ, Colombel JF, Frankel M, Hommes D, Lowder JN, Mayer L, Plevy S, Stokkers P, Travis S, Van Assche G, Baumgart DC, Targan SR (2010) Anti-CD3 antibody visilizumab is not effective in patients with intravenous corticosteroid-refractory ulcerative colitis. Gut 59:1485–1492.CrossRefPubMedPubMedCentralGoogle Scholar
  181. Sapone A, Bai JC, Ciacci C, Dolinsek J, Green PH, Hadjivassiliou M, Kaukinen K, Rostami K, Sanders DS, Schumann M, Ullrich R, Villalta D, Volta U, Catassi C, Fasano A (2012) Spectrum of gluten-related disorders: consensus on new nomenclature and classification. BMC Med 10:13.CrossRefPubMedPubMedCentralGoogle Scholar
  182. Scherf KA, Brockow K, Biedermann T, Koehler P, Wieser H (2016) Wheat-dependent exercise-induced anaphylaxis. Clin Exp Allergy 46:10-20.CrossRefPubMedPubMedCentralGoogle Scholar
  183. Scherf KA, Wieser H, Koehler P (2018) Novel approaches for enzymatic gluten degradation to create high-quality gluten-free products. Food Res Int 110:62-72.CrossRefPubMedPubMedCentralGoogle Scholar
  184. Schilling K, Körner A, Sehmisch S, Kreusch A, Kleint R, Benedix Y, Schlabrakowski A, Wiederanders B (2009) Selectivity of propeptide-enzyme interaction in cathepsin L-like cysteine proteases. Biol Chem 390:167-174.CrossRefPubMedPubMedCentralGoogle Scholar
  185. Schuppan D, Junker Y, Barisani D (2009) Celiac disease: from pathogenesis to novel therapies. Gastroenterology 137:1912-1933.CrossRefPubMedPubMedCentralGoogle Scholar
  186. Schuppan D, Pickert G, Ashfaq-Khan M, Zevallos V (2015) Non-celiac wheat sensitivity: Differential diagnosis, triggers and implications. Best Pract Res Clin Gastroenterol 29:469-476.CrossRefPubMedPubMedCentralGoogle Scholar
  187. Seilmeier W, Belitz H-D, Wieser H (1991) Separation and quantitative determination of high-molecular-weight subunits of glutenin from different wheat varieties and genetic variants of the variety Sicco. Z Lebensm Unters Forsch 192:124-129.CrossRefGoogle Scholar
  188. Shan L, Molberg Ø, Parrot I, Hausch F, Filiz F, Gray GM, Sollid LM, Khosla C (2002) Structural basis for gluten intolerance in celiac sprue. Science 297:2275–2279.CrossRefPubMedPubMedCentralGoogle Scholar
  189. Shan L, Qiao SW, Arentz-Hansen H, Molberg Ø, Gray GM, Sollid LM, Khosla C (2005) Identification and analysis of multivalent proteolytically resistant peptides from gluten: Implications for celiac sprue. J Proteome Res 4:1732–1741.CrossRefPubMedPubMedCentralGoogle Scholar
  190. Shewry PR (2018) Do ancient types of wheat have health benefits compared with modern bread wheat? J Cereal Sci 79:469-476.CrossRefPubMedPubMedCentralGoogle Scholar
  191. Shewry PR, D’Ovidio R, Lafiandra D, Jenkins JA, Mills ENC, Bekes F (2009) Wheat grain proteins. In: Khan K, Shewry PR (eds)Wheat Chemistry and technology. AACC International Inc., St. Paul, MN, pp. 223-298.Google Scholar
  192. Shewry PR, Pellny TK, Lovegrove A (2016) Is modern wheat bad for health? Nat Plant 2:1-3.CrossRefGoogle Scholar
  193. Shewry PR, Tatham AS (2016) Improving wheat to remove coeliac epitopes but retain functionality. J Cereal Sci 67:12-21.CrossRefPubMedPubMedCentralGoogle Scholar
  194. Shewry PR, Tatham AS, Forde J, Kreis M, Miflin BJ (1986) The classification and nomenclature of wheat gluten proteins: A reassessment. J Cereal Sci 4:97-106.CrossRefGoogle Scholar
  195. Shewry PR, Tatham AS, Halford NG (1999) The prolamins of the Triticeae. In: Shewry PR, Casey R (eds) Seed Proteins, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 37–84.CrossRefGoogle Scholar
  196. Sicherer SH (2001) Clinical implications of cross-reactive food allergens. J Allergy Clin Immunol 108:881-890.CrossRefPubMedPubMedCentralGoogle Scholar
  197. Siegel M, Bethune MT, Gass J, Ehren J, Xia J, Johannsen A, Stuge TB, Gray GM, Lee PP, Khosla C (2006) Rational design of combination enzyme therapy for coeliac sprue. Chem Biol 13:649–658.CrossRefPubMedPubMedCentralGoogle Scholar
  198. Siegel M, Garber ME, Spencer AG, Botwick W, Kumar P, Williams RN, Kozuka K, Shreeniwas R, Pratha V, Adelman DC (2012) Safety, tolerability, and activity of ALV003: results from two phase I single, escalating-dose clinical trials. Dig Dis Sci 57:440-450.CrossRefPubMedPubMedCentralGoogle Scholar
  199. Skodje GI, Sarna VK, Minelle IH, Rolfsen KL, Muir JG, Gibson PR, Veierød MB, Henriksen C, Lundin KEA (2018) Fructan, rather than gluten, induces symptoms in patients with self-reported non-celiac gluten sensitivity. Gastroenterology 154:529-539.CrossRefPubMedPubMedCentralGoogle Scholar
  200. Skylas DJ, Mackintosh JA, Cordwell SJ, Basseal DJ, Walsh BJ, Harry J, Blumenthal C, Copeland L, Wrigley CW, Rathmell W (2000) Proteome approach to the characterisation of protein composition in the developing and mature wheat-grain endosperm. J Cereal Sci 32:169–188.CrossRefGoogle Scholar
  201. Sofi F, Ghiselli L, Cesari F, Gori AM, Mannini L, Casini A, Vazzana C, Vecchio V, Gensini GF, Abbate R, Benedettelli S (2010) Effects of short-term consumption of bread obtained by an old Italian grain variety on lipid, inflammatory, and haemorheological variables: an intervention study. J Med Food 13: 1–6.CrossRefGoogle Scholar
  202. Sofi F, Whittaker A, Gori AM, Cesari F, Surrenti E, Abbate R, Gensini GF, Benedettelli S, Casini A (2014) Effect of Triticum turgidum subsp. turanicum wheat on irritable bowel syndrome: a double-blinded randomised dietary intervention trial. Br J Nutr 111:1992–1999.CrossRefPubMedPubMedCentralGoogle Scholar
  203. Sollid LM, Khosla C (2011) Novel therapies for coeliac disease. J Int Med 269:604-613.CrossRefGoogle Scholar
  204. Sollid LM, Qiao SW, Anderson RP, Gianfrani C, Koning F (2012). Nomenclature and listing of celiac disease relevant gluten T-cell epitopes restricted by HLA-DQ molecules. Immunogenetics 64:455-460.CrossRefPubMedPubMedCentralGoogle Scholar
  205. Sonti R, Green PH (2012) Celiac disease: obesity in celiac disease. Nat Rev Gastroenterol Hepatol 9:247-248.CrossRefPubMedPubMedCentralGoogle Scholar
  206. Spaenij-Dekking L1, Kooy-Winkelaar Y, van Veelen P, Drijfhout JW, Jonker H, van Soest L, Smulders MJ, Bosch D, Gilissen LJ, Koning F (2005) Natural variation in toxicity of wheat: potential for selection of nontoxic varieties for celiac disease patients. Gastroenterology 129:797–806.CrossRefPubMedPubMedCentralGoogle Scholar
  207. Stein J, Schuppan D (2014) Coeliac disease-new pathophysiological findings and their implications for therapy. Viszeralmedizin 30:156-165.CrossRefPubMedPubMedCentralGoogle Scholar
  208. Stember RH (2006) Buckwheat allergy. Allergy Asthma Proc 27:393-395.CrossRefPubMedPubMedCentralGoogle Scholar
  209. Stepniak D, Spaenij-Dekking L, Mitea C, Moester M, de Ru A, Baak-Pablo R, van Veelen P, Edens L, Koning F (2006) Highly efficient gluten degradation with a newly identified prolyl endoprotease: Implications for celiac disease. Am J Physiol Gastrointest Liver Physiol 291:G621–G629.CrossRefPubMedPubMedCentralGoogle Scholar
  210. Šuligoj T, Gregorini A, Colomba M, Ellis HJ, Ciclitira PJ (2013) Evaluation of the safety of ancient strains of wheat in coeliac disease reveals heterogeneous small intestinal T cell responses suggestive of coeliac toxicity. Clin Nutr 32:1043-1049.CrossRefPubMedPubMedCentralGoogle Scholar
  211. Tallberg A (1981a) Protein and lysine content in high-lysine double-recessives of barley. I. Combinations between mutant 1508 and a Hiproly back-cross. Hereditas 94:253-260.CrossRefGoogle Scholar
  212. Tallberg A (1981b) Protein and lysine content in high-lysine double-recessives of barley. II. Combinations between mutant 7 and a Hiproly back-cross. Hereditas 94:261-268.CrossRefGoogle Scholar
  213. Tallberg A (1982) Characterization of high-lysine barley genotypes. Hereditas 96:229-245CrossRefGoogle Scholar
  214. Tatham AS, Shewry PR (2008) Allergens to wheat and related cereals. Clin Exp Allergy 38:1712-1726.PubMedPubMedCentralGoogle Scholar
  215. Theethira TG, Dennis M, Leffler DA (2014) Nutritional consequences of celiac disease and the gluten-free diet. Expert Rev Gastroenterol Hepatol 8:123-129.CrossRefPubMedPubMedCentralGoogle Scholar
  216. Thompson T, Lee AR, Grace T (2010) Gluten contamination of grains, seeds, and flours in the United States: a pilot study. J Am Diet Assoc 110:937-940.CrossRefPubMedPubMedCentralGoogle Scholar
  217. Trcka J, Schäd SG, Scheurer S, Conti A, Vieths S, Gross G, Trautmann A (2012) Rice-induced anaphylaxis: IgE-mediated allergy against a 56-kDa glycoprotein. Int Arch Allergy Immunol 158:9-17.CrossRefPubMedPubMedCentralGoogle Scholar
  218. Turner AS, Bradburne RP, Fish L, Snape JW (2004) New quantitative trait loci influencing grain texture and protein content in bread wheat. J Cereal Sci 40:51-60.CrossRefGoogle Scholar
  219. Tye-Din JA, Stewart JA, Dromey JA, Beissbarth T, van Heel DA, Tatham A, Henderson K, Mannering SI, Gianfrani C, Jewell DP, Hill AV, McCluskey J, Rossjohn J, Anderson RP (2010) Comprehensive, quantitative mapping of T cell epitopes in gluten in celiac disease. Sci Transl Med 2:41–51.CrossRefGoogle Scholar
  220. Uhde M, Ajamian M, Caio G, De Giorgio R, Indart A, Green PH, Verna EC, Volta U, Alaedini A (2016) Intestinal cell damage and systemic immune activation in individuals reporting sensitivity to wheat in the absence of coeliac disease. Gut 65:1930-1937.CrossRefPubMedPubMedCentralGoogle Scholar
  221. van den Broeck H, Hongbing C, Lacaze X, Dusautoir J-C, Gilissen L, Smulders M, van der Meer I (2010a) In search of tetraploid wheat accessions reduced in celiac disease-related gluten epitopes. Mol Biosyst 6:2206-2213.CrossRefPubMedPubMedCentralGoogle Scholar
  222. van den Broeck HC, de Jong HC, Salentijn EMJ, Dekking L, Bosch D, Hamer RJ, Gilissen LJWJ, van der Meer IM, Smulders MJM (2010b) Presence of celiac disease epitopes in modern and old hexaploid wheat varieties: wheat breeding may have contributed to increased prevalence of celiac disease. Theor Appl Genet 121:1527-1539.CrossRefPubMedPubMedCentralGoogle Scholar
  223. van den Broeck HC, Gilissen LJWJ, Smulders MJM., van der Meer IM, Hamer RJ (2011) Dough quality of bread wheat lacking alpha-gliadins with celiac disease epitopes and addition of celiac-safe avenins to improve dough quality. J Cereal Sci 53:206–216.CrossRefGoogle Scholar
  224. van den Broeck HC, van Herpen TW, Schuit C, Salentijn EM, Dekking L, Bosch D, Hamer RJ, Smulders MJ, Gilissen LJ, van der Meer IM (2009) Removing celiac disease-related gluten proteins from bread wheat while retaining technological properties: a study with Chinese Spring deletion lines. BMC Plant Biol 9:41.CrossRefPubMedPubMedCentralGoogle Scholar
  225. Van Eckert R, Pfannhauser W, Riedl O (1992) Vienna Food Research Institute, Vienna, Austria. Contribution to quality assessment during production of gluten-free food. Ernährung/Nutrition 16:511-512.Google Scholar
  226. Vazquez-Roque MI, Camilleri M, Smyrk T, Murray JA, Marietta E, O’Neill J, Carlson P, Lamsam J, Janzow D, Eckert D, Burton D, Zinsmeister AR (2013) A controlled trial of gluten-free diet in patients with irritable bowel syndrome-diarrhea: effects on bowel frequency and intestinal function. Gastroenterology 144:903-911.CrossRefPubMedPubMedCentralGoogle Scholar
  227. Vincentini O, Borrelli O, Silano M, Gazza L, Pogna N, Luchetti R, De Vincenzi M (2009) T-cell response to different cultivars of farro wheat, Triticum turgidum ssp. dicoccum, in coeliac disease patients. Clin Nutr 28:272–277.CrossRefPubMedPubMedCentralGoogle Scholar
  228. Vincentini O, Maialetti F, Gazza L, Silano M, Dessi M, De Vincenzi M, Pogna NE (2007) Environmental factors of celiac disease: Cytotoxicity of hulled wheat species Triticum monococcum, T. turgidum ssp. dicoccum and T. aestivum ssp. spelta. J Gastroenterol Hepatol 22:1816–1822.CrossRefPubMedPubMedCentralGoogle Scholar
  229. Vivas S, Ruiz de Morales JM, Ramos F, Suárez-Vilela D (2006) Alemtuzumab for refractory celiac disease in a patient at risk for enteropathy-associated T-cell lymphoma. N Engl J Med 354:2514–2515.CrossRefPubMedPubMedCentralGoogle Scholar
  230. Volta U, Caio G, Tovoli F, De Giorgio R (2013) Non-celiac gluten sensitivity: questions still to be answered despite increasing awareness. Cell Mol Immunol 10:383–392.CrossRefPubMedPubMedCentralGoogle Scholar
  231. Waga J, Skoczowski A (2014) Development and characteristics of ω-gliadin-free wheat genotypes. Euphytica 195:105–116.CrossRefGoogle Scholar
  232. Waldmann TA, Conlon KC, Stewart DM, Worthy TA, Janik JE, Fleisher TA, Albert PS, Figg WD, Spencer SD, Raffeld M, Decker JR, Goldman CK, Bryant BR, Petrus MN, Creekmore SP, Morris JC (2013) Phase 1 trial of IL-15 trans presentation blockade using humanized Mikbeta1 mAb in patients with T-cell large granular lymphocytic leukemia. Blood 121:476-484.CrossRefPubMedPubMedCentralGoogle Scholar
  233. Walters MJ, Wang Y, Lai N, Baumgart T, Zhao BN, Dairaghi DJ, Bekker P, Ertl LS, Penfold ME, Jaen JC, Keshav S, Wendt E, Pennell A, Ungashe S, Wei Z, Wright JJ, Schall TJ (2010) Characterization of CCX282-B, an orally bioavailable antagonist of the CCR9 chemokine receptor, for treatment of inflammatory bowel disease. J Pharmacol Exp Ther 335:61–69.CrossRefPubMedPubMedCentralGoogle Scholar
  234. Watts RE, Siegel M, Khosla C (2006) Structure-activity relationship analysis of the selective inhibition of transglutaminase 2 by dihydroisoxazoles. J Med Chem 49:7493–7501.CrossRefPubMedPubMedCentralGoogle Scholar
  235. Wen S, Wen N, Pang J, Langen G, Brew-Appiah RAT, Mejias JH, Osorio C, Yang M, Gemini R, Moehs CP, Zemetra RS, Kogel K-H, Liu B, Wang X, von Wettstein D, Rustgi S (2012) Structural genes of wheat and barley 5-methylcytosine DNA glycosylases and their potential applications for human health. Proc Natl Acad Sci USA 109:20543-20548.CrossRefPubMedPubMedCentralGoogle Scholar
  236. West K (2009) CP-690550, a JAK3 inhibitor as an immunosuppressant for the treatment of rheumatoid arthritis, transplant rejection, psoriasis and other immune-mediated disorders. Curr Opin Investig Drugs 10:491–504.PubMedPubMedCentralGoogle Scholar
  237. Wieser H, Koehler P, Folck A, Becker D (2006) Characterization of wheat with strongly reduced α-gliadin content. In: 9th Gluten Workshop, pp. 13-16.Google Scholar
  238. Wolf C, Siegel JB, Tinberg C, Camarca A, Gianfrani C, Paski S, Guan R, Montelione G, Baker D, Pultz IS (2015) Engineering of Kuma030: A Gliadin Peptidase That Rapidly Degrades Immunogenic Gliadin Peptides in Gastric Conditions. J Am Chem Soc 137:13106-13113.CrossRefPubMedPubMedCentralGoogle Scholar
  239. Wrigley CW, Bekes F, Bushuk W (2006) Gluten: A balance of gliadin and glutenin. In Wrigley CW, Bekes F, Bushuk W (eds) Gliadin and glutenin: The unique balance of wheat quality. Am Assoc Cereal Chem, St. Paul, MN, pp. 1-28CrossRefGoogle Scholar
  240. Wrigley CW, Bietz JA (1988) Proteins and Amino Acids, In: Pomeranz Y (ed) Wheat Chemistry and Technology, Am Assoc Cereal Chem, St. Paul, MN, pp. 159-275.Google Scholar
  241. Xia J, Bergseng E, Fleckenstein B, Siegel M, Kim CY, Khosla C, Sollid LM (2007) Cyclic and dimeric gluten peptide analogues inhibiting DQ2-mediated antigen presentation in coeliac disease. Bioorg Med Chem 15:6565–6573.CrossRefPubMedPubMedCentralGoogle Scholar
  242. Yokoyama S, Perera PY, Waldmann TA, Hiroi T, Perera LP (2013) Tofacitinib, a janus kinase inhibitor demonstrates efficacy in an IL-15 transgenic mouse model that recapitulates pathologic manifestations of celiac disease. J Clin Immunol 33:586-594.CrossRefPubMedPubMedCentralGoogle Scholar
  243. Yokoyama S, Watanabe N, Sato N, Perera PY, Filkoski L, Tanaka T, Miyasaka M, Waldmann TA, Hiroi T, Perera LP (2009) Antibody-mediated blockade of IL-15 reverses the autoimmune intestinal damage in transgenic mice that overexpress IL-15 in enterocytes. Proc Natl Acad Sci USA 106:15849-15854.CrossRefPubMedPubMedCentralGoogle Scholar
  244. Zevallos VF, Ellis HJ, Suligoj T, Herencia LI, Ciclitira PJ (2012) Variable activation of immune response by quinoa (Chenopodium quinoa Willd.) prolamins in celiac disease. Am J Clin Nutr 96:337-344.CrossRefPubMedPubMedCentralGoogle Scholar
  245. Zevallos VF, Herencia LI, Chang F, Donnelly S, Ellis HJ, Ciclitira PJ (2014) Gastrointestinal Effects of Eating Quinoa (Chenopodium quinoa Willd.) in Celiac Patients. Am J Gastroenterol 109:270-278.CrossRefPubMedPubMedCentralGoogle Scholar
  246. Zevallos VF, Raker V, Tenzer S, Jimenez-Calvente C, Ashfaq-Khan M, Rüssel N, Pickert G, Schild H, Steinbrink K, Schuppan D (2017) Nutritional wheat amylase-trypsin inhibitors promote intestinal inflammation via activation of myeloid cells. Gastroenterology 152:1100-1113.CrossRefPubMedPubMedCentralGoogle Scholar
  247. Zevallos VF, Raker VK, Maxeiner J, Scholtes P, Steinbrink K, Schuppan D (2018) Dietary wheat amylase trypsin inhibitors exacerbate murine allergic airway inflammation. Eur J Nutr
  248. Zhao J, de Vera J, Narushima S, Beck EX, Palencia S, Shinkawa P, Kim KA, Liu Y, Levy MD, Berg DJ, Abo A, Funk WD (2007) R-spondin1, a novel intestinotrophic ameliorates experimental colitis in mice. Gastroentrology 132:1331–1343.CrossRefGoogle Scholar
  249. Zuidmeer L, Goldhahn K, Rona RJ, Gislason D, Madsen C, Summers C, Sodergren E, Dahlstrom J, Lindner T, Sigurdardottir ST, McBride D, Keil T (2008) The prevalence of plant food allergies: a systematic review. J Allergy Clin Immunol 121:1210-1218.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Plant and Environmental SciencesClemson University Pee Dee Research and Education CenterFlorenceUSA
  2. 2.Department of Plant SciencesRothamsted ResearchHarpendenUK
  3. 3.NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human BiologyMaastricht UniversityMaastrichtNetherlands

Personalised recommendations