Phenolic Compounds in Wheat Kernels: Genetic and Genomic Studies of Biosynthesis and Regulations

  • Domenica Nigro
  • Heinrich Grausgruber
  • Carlos Guzmán
  • Barbara LaddomadaEmail author


Whole wheat grains are an important source of bioactive components, particularly of phenolic acids and flavonoids. Due to the health-promoting effects of these phenolics, nowadays, the increase of their content in mature kernels is of great interest and a potential target for wheat breeding programs. The biogenesis of phenolics occurs through the general phenylpropanoid pathway, which is ubiquitous in plant cell walls and leads to the synthesis of secondary metabolites that are involved in plant defence and structural support. This chapter reviews the current knowledge in phenylpropanoid chemistry, and the genetic and molecular basis for the biosynthesis of phenolic acids and anthocyanins in wheat grains. Also, advances in assessing genetic variation in the content and composition of these components in wheat germplasm are reviewed, including the effects of different environmental conditions on their accumulation in mature kernels. The recent, ongoing genomic studies are reviewed providing updates on quantitative trait loci and genes involved in the synthesis and accumulation of phenolics in wheat kernels. Finally, the promise and limitations of breeding programs to potentially develop wheat cultivars rich in phenolic components are discussed.


Phenolic acids Anthocyanins Health properties Biosynthetic pathway Genetic control Breeding 


  1. Abdel-Aal ESM, Hucl P (1999) A rapid method for quantifying total anthocyanins in blue aleurone and purple pericarp wheats. Cereal Chem 76: 350–354.CrossRefGoogle Scholar
  2. Abdel-Aal ESM, Young JC, Rabalski I (2006) Anthocyanin composition in black, blue, pink, purple, and red cereal grains. J Agric Food Chem 54: 4696–4704.CrossRefGoogle Scholar
  3. Adom KK, Sorrells EM, Liu RH (2003) Phytochemical profiles and antioxidant activity of wheat varieties. J Agric Food Chem 51: 7825–7834.CrossRefGoogle Scholar
  4. Agarwal T, Grotewold E, Doseff AI et al. (2016) MYB31/MYB42 syntelogs exhibit divergent regulation of phenylpropanoid genes in maize, sorghum and rice. Sci Rep 6:28502.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Allen E, Xie Z, Gustafson AM et al. (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121: 207–221.CrossRefGoogle Scholar
  6. Andreasen MF, Kroon PA, Williamson G et al. (2001) Intestinal release and uptake of phenolic antioxidant diferulic acids. Free Radic Biol Med 31:304–314.CrossRefGoogle Scholar
  7. Atanasova-Penichon V, Barreau C, Richard-Forget F (2016) Antioxidant secondary metabolites in cereals: Potential involvement in resistance to Fusarium and mycotoxin accumulation. Front Microbiol 7, 566.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bhargava A, Mansfield SD, Hall HC et al. (2010) MYB75 functions in regulation of secondary cell wall formation in the Arabidopsis inflorescence stem. Plant Physiol 154: 1428–1438.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Blanco A, Mangini G, Giancaspro A et al. (2012). Relationships between grain protein content and grain yield components through quantitative trait locus analyses in a recombinant inbred line population derived from two elite durum wheat cultivars. Mol Breed 30: 79–92.CrossRefGoogle Scholar
  10. Blandino M, Sovrani V, Marinaccio F et al. (2013) Nutritional and technological quality of bread enriched with an intermediated pearled wheat fraction. Food Chem 141: 2549–2557.CrossRefGoogle Scholar
  11. Böhmdorfer S, Oberlerchner JT, Fuchs C, Rosenau T, Grausgruber H (2018) Profiling and quantification of grain anthocyanins in purple pericarp× blue aleurone wheat crosses by high-performance thin-layer chromatography and densitometry. Plant Methods 14: 29.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bourne L, Paganga G, Baxter D et al. (2000) Absorption of ferulic acid from low-alcohol beer. Free Radic Res 32: 273–280.CrossRefGoogle Scholar
  13. Bourne LC, Rice-Evans C (1998) Bioavailability of ferulic acid. Biochem Biophys Res Commun 253: 222–227.CrossRefGoogle Scholar
  14. Brandolini A, Castoldi P, Plizzari L et al. (2013) Phenolic acids composition, total polyphenols content and antioxidant activity of Triticum monococcum, Triticum turgidum and Triticum aestivum: a two-year evaluation. J Cereal Sci 58: 123–131.CrossRefGoogle Scholar
  15. Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56: 317–333.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Brouns F, Hemery Y, Price R et al. (2012) Wheat aleurone: Separation, composition, health aspects, and potential food use. Crit Rev Food Sci Nutr 52: 553–568.CrossRefGoogle Scholar
  17. Bunzel M, Ralph J, Marita JM et al. (2001) Diferulates as structural components in soluble and insoluble cereal dietary fibre. J Sci Food Agric 81: 653–660.CrossRefGoogle Scholar
  18. Buresova V, Kopecky D, Bartos J, Martinek P, Watanabe N, Vyhnanek T, Dolezel J. (2015) Variation in genome composition of blue-aleuron wheat. Theor Appl Genet 128: 278–282.CrossRefGoogle Scholar
  19. Bustos DV, Riegel R, Calderini DF (2012) Anthocyanin content of grains in purple wheat is affected by grain position, assimilate availability and agronomic management. J Cereal Sci 55: 257–264.CrossRefGoogle Scholar
  20. Cai SG, Han ZG, Huang YQ, Chen ZH, Zhang GP, Dai F. (2015) Genetic diversity of individual phenolic acids in barley and their correlation with barley malt quality. J Agric Food Chem 63: 7051–7057.CrossRefGoogle Scholar
  21. Cardona F, Andrés-Lacueva C, Tulipani S et al. (2013) Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem 24: 1415–1422.CrossRefGoogle Scholar
  22. Chagné D, Krieger C, Rassam M, et al. (2012) QTL and candidate gene mapping for polyphenolic composition in apple fruit. BMC Plant Biol 12: 12.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Craven-Bartle B, Pascual MB, Cánovas FM et al. (2013) A Myb transcription factor regulates genes of the phenylalanine pathway in maritime pine. Plant J 74: 755–766.CrossRefGoogle Scholar
  24. De Kock S, Taylor J, Taylor JRN (1999) Effect of heat treatment and particle size of different brans on loaf volume of brown bread. LWT-Food Sci Technol 32: 349–356.CrossRefGoogle Scholar
  25. de Leonardis AM, Fragasso M, Beleggia R et al. (2015) Effects of heat stress on metabolite accumulation and composition, and nutritional properties of durum wheat grain. Int J Mol Sci 16: 30382–30404.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Deng Y, Lu S (2017). Biosynthesis and regulation of phenylpropanoids in plants. Crit Rev Plant Sci 36: 257–290.CrossRefGoogle Scholar
  27. Dias AP, Grotewold E (2003) Manipulating the accumulation of phenolics in maize cultured cells using transcription factors. Biochem Eng J 14: 207–216.CrossRefGoogle Scholar
  28. Dias AP, Braun EL, McMullen MD, Grotewold E (2003) Recently duplicated maize R2R3 Myb genes provide evidence for distinct mechanisms of evolutionary divergence after duplication. Plant Physiol 131: 610–620.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Dinelli G, Carretero AS, Di Silvestro R et al. (2009) Determination of phenolic compounds in modern and old varieties of durum wheat using liquid chromatography coupled with time-of-flight mass spectrometry. J Chromatogr A 1216: 7229–7240.CrossRefGoogle Scholar
  30. Drankham K, Carter J, Madl R et al. (2003) Antitumor activity of wheats with high orthophenolic content. Nutr Cancer 47:188–194.CrossRefGoogle Scholar
  31. Du H, Feng BR, Yang SS et al. (2012) The R2R3-MYB transcription factor gene family in maize. PLoS One 7:e37463.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Dubos C, Le Gourrierec J, Baudry A et al. (2008) MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J 55: 940–953.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Dubos C, Stracke R, Grotewold E et al. (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15: 573–581.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Dwivedi SL, Upadhyaya HD, Chung IM et al. (2016) Exploiting phenylpropanoid derivatives to enhance the nutraceutical values of cereals and legumes. Front Plant Sci 7: 763.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Edwards NM, Biliaderis CG, Dexter JE (1995) Textural characteristics of wholewheat pasta and pasta containing non-starch polysaccharides. J Food Sci 60: 1321–1324.CrossRefGoogle Scholar
  36. El-Basyouni SZ, Chen D, Ibrahim RK et al. (1964) The biosynthesis of hydroxybenzoic acids in higher plants. Phytochemistry 3: 485–492.CrossRefGoogle Scholar
  37. Fares C, Platani C, Baiano A et al. (2010) Effect of processing and cooking on phenolic acid profile and antioxidant capacity of durum wheat pasta enriched with debranning fractions of wheat. Food Chem 119: 1023–1029.CrossRefGoogle Scholar
  38. Fernandez-Orozco R, Li L, Harflett C, Shewry PR, Ward JL (2010) Effects of environment and genotype on phenolic acids in wheat in the HEALTHGRAIN diversity screen. J Agric Food Chem 58: 9341–9352.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Fornalé S, Lopez E, Salazar-Henao JE et al. (2014) AtMYB7, a new player in the regulation of UV-sunscreens in Arabidopsis thaliana. Plant Cell Physiol. 55: 507–516.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Fornalé S, Shi XH, Chai CL et al. (2010) ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux. Plant J 64: 633–644.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Fulcher RG (1982) Fluorescence microscopy of cereals. Food Microstructure 1: 167–175.Google Scholar
  42. Furbank RT, Tester M (2011) Phenomics technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16: 635–644.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Gauthier L, Bonnin-Verdal MN, Marchegay G et al. (2016) Fungal biotransformation of chlorogenic and caffeic acids by Fusarium graminearum: new insights in the contribution of phenolic acids to resistance to deoxynivalenol accumulation in cereals. Int J Food Microbiol 221: 61–68.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Geissman TA, Hinreiner E (1952) Theories of the biogenesis of flavonoid compounds. Bot Rev 18: 77–164.CrossRefGoogle Scholar
  45. Geleta N, Eticha F, Grausgruber H (2009) Preservation of tetraploid wheat landraces in the West Central Highlands of Ethiopia. In: Splechtna BE (ed), Proc Int Symp Preservation of biocultural diversity – a global issue, 6–8 May 2008, Vienna, Austria, pp. 91–98. BOKU-University of Natural Resources and Life Sciences, Vienna.Google Scholar
  46. Giambanelli E, Ferioli F, Koc,aoglu B, Jorjadze M, Alexieva I,Darbinyan N, D’Antuono LF (2013) A comparative studyof bioactive compounds in primitive wheat populationsfrom Italy, Turkey, Georgia, Bulgaria and Armenia. J Sci Food Agric 93: 3490–3501.Google Scholar
  47. Graf E (1992) Antioxidant potential of ferulic acid. Free Rad Biol Med 13: 435–448.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Grausgruber H, Atzgersdorfer K, Böhmdorfer S (2018) Purple and blue wheat - Health-promoting grains with increased antioxidant activity. Cereal Foods World 63: 217–220.Google Scholar
  49. Griffin WB (1987) Outcrossing in New Zealand wheats measured by occurrence of purple grain. NZ J Agric Res 30: 287–290.CrossRefGoogle Scholar
  50. Hatcher DW, Kruger JE (1993) Distribution of polyphenol oxidase in flour millstreams of Canadian common wheat classes milled to three extraction rates. Cereal Chem 70: 51–55.Google Scholar
  51. Heimler D, Vignolini P, Isolani L et al. (2010) Polyphenol content of modern and old varieties of Triticum aestivum L. and T. durum Desf. grains in two years of production. J Agric Food Chem 58: 7329–7334.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Heine GF, Malik V, Dias AP et al. (2007) Expression and molecular characterization of ZmMYB-IF35 and related R2R3-MYB transcription factors. Mol Biotechnol 37: 155–164.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Hemdane S, Jacobs PJ, Dornez E et al. (2016) Wheat (Triticum aestivum L.) bran in bread making: A critical review. Compr Rev Food Sci Food Safety 15: 28–42.CrossRefGoogle Scholar
  54. Hemery Y, Rouau X, Lullien-Pellerin V et al. (2007) Dry processes to develop wheat fractions and products with enhanced nutritional quality. J Cereal Sci 46: 327–347.CrossRefGoogle Scholar
  55. Hemery Y, Chaurand M, Holopainen U, Lampi AM, Lenthinen P, Piironen V, Sadaoudi A, Rouau X (2011) Potential of dry fractionation of what bran for the development of food ingredients, part I: Influence of ultra-fine grinding. J Cereal Sci 53: 1–8.CrossRefGoogle Scholar
  56. Hichri I, Barrieu F, Bogs J, et al. (2011) Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot 62: 2465–2483.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Hiemori M, Koh E, Mitchell AE (2009) Influence of cooking on anthocyanins in black rice (Oryza sativa L. japonica var. SBR). J Agric Food Chem 57: 1908–1914.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7: 1071–1083.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Hosseinian FS, Li W, Beta T (2008) Measurement of anthocyanins and other phytochemicals in purple wheat. Food Chem 109: 916–924.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Iriki N, Ishii G, Kuwabara T et al. (2007) Effects of anthocyanin on antioxidative activity and seed dormancy in wheat grain. Jpn J Crop Sci 76:569-575 (in Japanese, English abstract).Google Scholar
  61. Itagaki S, Kurokawa T, Nakata C et al. (2009) In vitro and in vivo antioxidant properties of ferulic acid: A comparative study with other natural oxidation inhibitors. Food Chem 114: 466–471.CrossRefGoogle Scholar
  62. Iwakawa HO, Tomari Y (2015) The functions of micro- RNAs: mRNA decay and translational repression. Trends Cell Biol 25: 651–665.CrossRefGoogle Scholar
  63. Jiang W, Liu T, Nan W et al. (2018) Two transcription factors TaPpm1 and TaPpb1 co-regulate anthocyanin biosynthesis in purple pericarps of wheat. J Exp Bot 69: 2555–2567.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Jin H, Martin C (1999) Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol 41: 577–585.CrossRefGoogle Scholar
  65. Jin H, Cominelli E, Bailey P et al. (2000) Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J 19: 6150–6161.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Jin L, Xiao P, Lu Y, Shao Y, Shen Y, Bao J (2009) Quantitative trait loci for brown rice color, phenolics, flavonoid contents, and antioxidant capacity in rice grain. Cereal Chem 86: 609–615.CrossRefGoogle Scholar
  67. Juurlink BHJ, Azouz HJ, Aldalati AMZ et al. (2014) Hydroxybenzoic acid isomers and the cardiovascular system. Nutr J 13: 63.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Katina K, Laitila A, Juvonen R et al. (2007) Bran fermentation as a means to enhance technological properties and bioactivity of rye. Food Microbial 24: 175–186.CrossRefGoogle Scholar
  69. Kazan K, Gardiner DM, Manners JM (2012) On the trail of a cereal killer: recent advances in Fusarium graminearum pathogenomics and host resistance. Mol Plant Pathol 13: 399–413.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Khlestkina EK, Pshenichnikova TA, Röder MS et al. (2010) Clustering of anthocyanin pigmentation genes in wheat group 7 chromosomes. Cereal Res Commun 37: 391–398.CrossRefGoogle Scholar
  71. Khlestkina EK, Shoeva OY, Gordeeva EI (2015) Flavonoid biosynthesis genes in wheat. Russ J Genet Appl Res 5: 268–278.CrossRefGoogle Scholar
  72. Kikuzaki H, Hisamoto M, Hirose K, Akiyadm K, Taniguchi H (2002). Antioxidant properties of ferulic acid and its related compounds. J Agric Food Chem 50: 2161–2168.CrossRefGoogle Scholar
  73. Kyung-Hee K, Tsao R, Yang R et al. (2006) Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem 95: 466–473.CrossRefGoogle Scholar
  74. Lachman J, Martinek P, Kotíková Z et al. (2017) Genetics and chemistry of pigments in wheat grain - A review. J Cereal Sci 74: 145–154.CrossRefGoogle Scholar
  75. Laddomada B, Caretto S, Mita G (2015a) Wheat bran phenolic acids: bioavailability and stability in whole wheat-based foods. Molecules 20: 15666–15685.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Laddomada B, Durante M, Mangini G et al. (2017). Genetic variation for phenolic acids concentration and composition in a tetraploid wheat (Triticum turgidum L.) collection. Genet Resour Crop Evol 64: 587–597.CrossRefGoogle Scholar
  77. Laddomada B, Durante M, Minervini F et al. (2015b) Phytochemical characterization and anti-inflammatory activity of extracts from the whole-meal flour of Italian durum wheat cultivars. Int J Mol Sci 16: 3512–3527.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Laus MN, Di Benedetto NA, Caporizzi R, Pastore D (2015) Evaluation of phenolic antioxidant capacity in grains of modern and old durum wheat genotypes by the novel QUENCHERABTS approach. Plant Foods Hum Nutr 70: 207–214.CrossRefGoogle Scholar
  79. Lempereur I, Rouau X, Abecassis J (1997) Genetic and agronomic variation in arabinoxylan and ferulic acid content of durum wheat (Triticum durum L.) grains and its milling fractions. J Cereal Sci 25: 103–110.CrossRefGoogle Scholar
  80. Li C, Lu S (2014) Genome-wide characterization and comparative analysis of R2R3-MYB transcription factors shows the complexity of MYB-associated regulatory networks in Salvia miltiorrhiza. BMC Genom 15: 277.CrossRefGoogle Scholar
  81. Li L, Shewry PR, Ward JL (2008) Phenolic acids in wheat varieties in the HEALTHGRAIN diversity screen. J Agric Food Chem 56: 9732–9739.CrossRefGoogle Scholar
  82. Li MW, Muñoz NB, Wong CF et al. (2016). QTLs regulating the contents of antioxidants, phenolics, and flavonoids in soybean seeds share a common genomic region. Front Plant Sci 7: 854.PubMedPubMedCentralGoogle Scholar
  83. Li N, Li S, Zhang K et al. (2017) ThMYC4E, candidate Blue aleurone 1 gene controlling the associated trait in Triticum aestivum. PLoS One 127:e1081116.Google Scholar
  84. Li W, Beta T (2011) Flour and bread from black-, purple-, and blue-colored wheats. In: Preedy VR, Watson RR, Patel VB (eds), Flour and breads and their fortification in health and disease prevention, pp. 59–67. Academic Press, London.CrossRefGoogle Scholar
  85. Li W, Pickard MD, Beta T (2007) Effect of thermal processing on antioxidant properties of purple wheat bran. Food Chem 104: 1080–1086.CrossRefGoogle Scholar
  86. Liu Q, Qiu Y, Beta T (2010) Comparison of antioxidant activities of different colored wheat grains and analysis of phenolic compounds. J Agric Food Chem 58: 9235–9241.CrossRefGoogle Scholar
  87. Liu J, Osbourn A, Ma P (2015) MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Mol Plant 8: 689–708.CrossRefGoogle Scholar
  88. Liu H, Bruce DR, Sissons M, Able AJ, Able JA (2018) Genotype-dependent changes in the phenolic content of durum under water-deficit stress. Cereal Chem 95: 59–78.CrossRefGoogle Scholar
  89. Liyana-Pathirana CM, Shahidi F (2006) Importance of insoluble-bound phenolics to antioxidant properties of wheat. J Agric Food Chem 54: 1256–1264.CrossRefGoogle Scholar
  90. Lukow O, Suchy J, Adams K et al. (2012) Effect of solar radiation, plant maturity and post-harvest treatment on the color and phenolic and carotenoid contents in seed of red and white Canadian wheat. J Plant Cell Sci 3: 1–13.Google Scholar
  91. Luo J, Butelli E, Hill L et al. (2008) AtMYB12 regulates caffeoyl quinic acid and flavonol synthesis in tomato: expression in fruit results in very high levels of both types of polyphenol. Plant J 56: 316–326.CrossRefGoogle Scholar
  92. Ma D, Li Y, Zhang J et al. (2016) Accumulation of phenolic compounds and expression profiles of phenolic acid biosynthesis related genes in developing grains of white, purple, and red wheat. Front Plant Sci 7: 528.PubMedPubMedCentralGoogle Scholar
  93. Maccaferri M, Sanguineti M C, Corneti S et al. (2008) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 178: 489–511.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Marín L, Miguélez EM, Villar CJ et al. (2015) Bioavailability of dietary polyphenols and gut microbiota metabolism: Antimicrobial properties. BioMed Res Int 2015: 905215.Google Scholar
  95. Martini D, Taddei F, Nicoletti I et al. (2014) Effects of Genotype and Environment on Phenolic Acids Content and Total Antioxidant Capacity in Durum Wheat. Cereal Chem 91: 310–317.CrossRefGoogle Scholar
  96. Mateo Anson N, Aura AM, Selinheimo E et al. (2011) Bioprocessing of wheat bran in whole wheat bread increases the bioavailability of phenolic acids in men and exerts antiinflammatory effects ex vivo. J Nutr 141: 137–143.CrossRefGoogle Scholar
  97. Matsui K, Umemura Y, Ohme-Takagi M (2008) AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. Plant J 55: 954–967.CrossRefGoogle Scholar
  98. McKeehen JD, Busch RH, Fulcher RG (1999) Evaluation of wheat (Triticum aestivum L.) phenolic acids during grain development and their contribution to Fusarium resistance. J Agric Food Chem 47: 1476–1482.CrossRefGoogle Scholar
  99. Menga V, Fares C, Troccoli A, Cattivelli L, Baiano A (2010) Effects of genotype, location and baking on the phenolic content and some antioxidant properties of cereal species. Int J Food Sci Tech 45: 7–16.CrossRefGoogle Scholar
  100. Metzger RJ, Sebesta E (2004) Registration of three blue-seeded wheat genetic stocks exhibiting xenia. Crop Sci 44: 2281–2283.CrossRefGoogle Scholar
  101. Mohammadi M, Endelman J, Nair N, Shiaoman C, Jones S, Muehlbauer G, Ullrich S, Baik B-K, Wise M, Smith K (2014) Association mapping of grain hardness, polyphenol oxidase, total phenolics, amylose content, and β-glucan in US barley breeding germplasm. Mol Breed 34: 1229–1243.CrossRefGoogle Scholar
  102. Mol J, Grotewold E, Koes R (1998) How genes paint flowers and seeds. Trends Plant Sci 3:212–217.CrossRefGoogle Scholar
  103. Mpofu A, Sapirstein HD, Beta T (2006) Genotype and environmental variation in phenolic content, phenolic acid composition, and antioxidant activity of hard spring wheat. J Agric Food Chem 54: 1265–1270.CrossRefGoogle Scholar
  104. Mu HM, Du XJ, Zhang XS (2015) Study on plants MYB transcription factors regulate biological synthesis of phenylpropanoid metabolism. North Garden 24: 171–174.Google Scholar
  105. Nicoletti I, Daniela MD, De Rossi A et al. (2013) Identification and quantification of soluble free, soluble conjugated, and in soluble bound phenolic acids in durum wheat (Triticum turgidum L vardurum) and derived products by RP-HPLC on a semimicro separation scale. J Agric Food Chem 61: 11800–11807.CrossRefGoogle Scholar
  106. Nigro D, Laddomada B, Mita G et al. (2017) Genome-wide association mapping of phenolic acids in durum wheat. J Cereal Sci 75: 25–34.CrossRefGoogle Scholar
  107. Oberlerchner JT, Fuchs C, Grausgruber H et al. (2018) À côté calibration - Making optimal use of time and space in quantitative high performance thin layer chromatography. J Chromatogr A 1533: 193–198.CrossRefGoogle Scholar
  108. Okot-Kotber M A, Liavoga A, Yong KJ, Bagorogoza K (2001) Activity and inhibition of polyphenol oxidase in extracts of bran and other milling fractions from a variety of wheat cultivars. Cereal Chem 78:514–520.CrossRefGoogle Scholar
  109. Parker ML, Ng A, Waldron KW (2005) The phenolic acid and polysaccharide composition of cell walls of bran layers of mature wheat (Triticum aestivum L. cv. Avalon) grains. J Sci Food Agric 85: 2539–2547.CrossRefGoogle Scholar
  110. Pasqualone A, Delvecchio LN, Gambacorta G et al. (2015) Effect of supplementation with wheat bran aqueous extracts obtained by ultrasound-assisted technologies on the sensory properties and the antioxidant activity of dry pasta. Nat Prod Commun 10: 1739–1742.PubMedGoogle Scholar
  111. Pasqualone A, Laddomada B, Centomani I et al. (2017) Bread making aptitude of mixtures of re-milled semolina and selected durum wheat milling by-products. LWT-Food Sci Technol 78: 151–159.CrossRefGoogle Scholar
  112. Pasqualone A, Delvecchio LN, Mangini G, Taranto F, Blanco A (2014). Variability of total soluble phenolic compounds and antioxidant activity in a collection of tetraploid wheat. Agr Food Sci 23: 307–316.CrossRefGoogle Scholar
  113. Payyavula RS, Singh RK, Navarre DA (2013) Transcription factors, sucrose, and sucrose metabolic genes interact to regulate potato phenylpropanoid metabolism. J Exp Bot 64: 5115–5131.CrossRefPubMedPubMedCentralGoogle Scholar
  114. Peragine A, Yoshikawa M, Wu G, et al. (2004) SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev 18: 2368–2379.CrossRefPubMedPubMedCentralGoogle Scholar
  115. Plazas M, Andújar I, Vilanova S et al. (2013) Breeding for chlorogenic acid content in eggplant: interest and prospects. Not Bot Horti Agrobot 41: 26–35.CrossRefGoogle Scholar
  116. Preston J, Wheeler J, Heazlewood J, Li SF, and Parish RW (2004) AtMYB32 is required for normal pollen development in Arabidopsis thaliana. Plant J 40: 979–995.CrossRefGoogle Scholar
  117. Prohens J, Whitaker BD, Plazas M et al. (2013) Genetic diversity in morphological characters and phenolic acids content resulting from an interspecific cross between eggplant, Solanum melongena, and its wild ancestor (S. incanum). Ann Appl Biol 162: 242–257.CrossRefGoogle Scholar
  118. Qin YZ, Tai G, Xie KY et al. (2014). Ambient light alters gene expression pattern of enzymes and transcription factors involved in phenylpropanoid metabolic pathway in potato under chilling stress. Agric Sci Technol 15: 1899–1904.Google Scholar
  119. Qiu J, Gao F, Shen G et al. (2013) Metabolic engineering of the phenylpropanoid pathway enhances the antioxidant capacity of Saussurea involucrata. PLoS One 8: e70665.CrossRefPubMedPubMedCentralGoogle Scholar
  120. Qualset CO, Soliman KM, Jan CC, Dvořák J, McGuire PE, Vogt HE (2005) Registration of UC66049 Triticum aestivum blue aleurone genetic stock. Crop Sci 45: 432.CrossRefGoogle Scholar
  121. Rafalski JA 2010 Association genetics in crop improvement. Curr Opin Plant Biol 13: 174–180.Google Scholar
  122. Ragaee S, Seetharaman K, Abdel-Aal ESM (2014) The impact of milling and thermal processing on phenolic compounds in cereal grains. Crit Rev Food Sci Nutr 54: 837–849.CrossRefGoogle Scholar
  123. Ramos S (2008) Cancer chemoprevention and chemotherapy: dietary polyphenols and signalling pathways. Mol Nutr Food Res 52: 507–526.CrossRefGoogle Scholar
  124. Rhodes DH, Hoffmann JrL, Rooney WL, Ramu P, Morris GP, Kresovich S (2014) Genome-wide association study of grain polyphenol concentrations in global sorghum [Sorghum bicolor (L.) Moench] germplasm. J Agric Food Chem 62: 10916–10927.CrossRefGoogle Scholar
  125. Rizzello CG, Coda R, Mazzacane F (2012) Micronized by-products from debranned durum wheat and sourdough fermentation enhanced the nutritional, textural and sensory features of bread. Food Res Int 46: 304–313.CrossRefGoogle Scholar
  126. Rommens CM, Richael CM, Yan H (2008) Engineered native pathways for high kaempferol and caffeoylquinate production in potato. Plant Biotechnol J 6: 870–886.CrossRefGoogle Scholar
  127. Sacco A, Di Matteo A, Lombardi N et al. (2013). Quantitative trait loci pyramiding for fruit quality traits in tomato. Mol Breed 31: 217–222.CrossRefGoogle Scholar
  128. Salmenkallio-Marttila, M, Katina K, Autio K (2001) Effects of bran fermentation on quality and microstructure of high-fiber wheat bread. Cereal Chem 78: 429–435.CrossRefGoogle Scholar
  129. Santiago R, Barros-Rios J, Malvar RA (2013) Impact of cell wall composition on maize resistance to pests and diseases. Int J Mol Sci 14: 6960–6980.CrossRefPubMedPubMedCentralGoogle Scholar
  130. Schwinn KE, Davies KM (2004) Flavonoids. In: Davies KM (ed), Plant pigments and their manipulation, Blackwell Publishing Ltd, Oxford, UK, p 92–149.Google Scholar
  131. Serpen A, Gökmen V, Karagöz A et al. (2008) Phytochemical quantification and total antioxidant capacities of emmer (Triticum dicoccon Schrank) and einkorn (Triticum monococcum L.) wheat landraces. J Agric Food Chem 56: 7285–7292.CrossRefPubMedPubMedCentralGoogle Scholar
  132. Sevgi K, Tepe B, Sarikurkcu C (2015) Antioxidant and DNA damage protection potentials of selected phenolic acids. Food Chem Toxicol 77: 12–21CrossRefPubMedPubMedCentralGoogle Scholar
  133. Shahid M, Saleem MF, Anjum SA, Shahid M, Afzal I (2017) Effect of terminal heat stress on proline, secondary metabolites and yield components of wheat (Triticum aestivum L.) genotypes. Philipp Agric Sci 100: 278–286.Google Scholar
  134. Shamloo M, Babawale EA, Furtado A et al. (2017) Effects of genotype and temperature on accumulation of plant secondary metabolites in Canadian and Australian wheat grown under controlled environments. Sci Rep 7: 9133.CrossRefPubMedPubMedCentralGoogle Scholar
  135. Shewry PR, Hey S (2015) Do “ancient” wheat species differ from modern bread wheat in their contents of bioactive components? J Cereal Sci 65: 236–243.CrossRefGoogle Scholar
  136. Shewry PR, Piironen V, Lampi AM, Edelmann M, Kariluoto S, Nurmi T, Fernandez-Orozco R, Ravel C, Charmet G, Andersson AAM et al. (2010) The HEALTHGRAIN wheat diversity screen: Effects of genotype and environment on phytochemicals and dietary fiber components. J Agric Food Chem 58: 9291–9298.CrossRefPubMedPubMedCentralGoogle Scholar
  137. Shoeva OY (2018) Complex regulation of the TaMyc1 gene expression in wheat grain synthesizing anthocyanin pigments. Mol Biol Rep 45: 327–334.CrossRefPubMedPubMedCentralGoogle Scholar
  138. Shoeva OY, Gordeeva EI, Khlestkina EK (2014) The regulation of anthocyanin synthesis in the wheat pericarp. Molecules 19: 20266–20279.CrossRefPubMedPubMedCentralGoogle Scholar
  139. Siebenhandl S, Grausgruber H, Pellegrini N et al. (2007) Phytochemical profile of main antioxidants in different fractions of purple and blue wheat, and black barley. J Agric Food Chem 55: 8541–8547.CrossRefPubMedPubMedCentralGoogle Scholar
  140. Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method Enzymol 299: 152–178.CrossRefGoogle Scholar
  141. Sivam AS, Sun, Waterhouse D et al. (2011) Physicochemical properties of bread dough and finished bread with added pectin fiber and phenolic antioxidants. J Food Sci 76: H97–H107.CrossRefPubMedPubMedCentralGoogle Scholar
  142. Sonbol FM, Fornale S, Capellades M et al. (2009) The maize ZmMYB42 represses the phenylpropanoid pathway and affects the cell wall structure, composition and degradability in Arabidopsis thaliana. Plant Mol Biol 70: 283–296.CrossRefGoogle Scholar
  143. Stumpf B, Yan F, Honermeier B (2015) Nitrogen fertilization and maturity influence the phenolic concentration of wheat grain (Triticum aestivum). J Plant Nutr Soil Sci 178: 118–125.CrossRefGoogle Scholar
  144. Syed Jaafar SN, Baron J, Siebenhandl-Ehn S et al. (2013) Increased anthocyanin content in purple pericarp × blue aleurone wheat crosses. Plant Breed 132: 546–552.CrossRefGoogle Scholar
  145. Taranto F, Delvecchio LN, Mangini G et al. (2012)Molecular and physic-chemical evaluation of enzymatic browning of whole meal and dough in a collection of tetraploid wheats. J Cereal Sci 55: 405–414.CrossRefGoogle Scholar
  146. Tereschenko OY, Pshenichnikova TA, Salina EA et al. (2012) Development and molecular characterization of a novel wheat genotype having purple grain colour. Cereal Res Commun 40: 210–214.CrossRefGoogle Scholar
  147. Thomasset SC, Berry DP, Garcea G et al. (2007) Dietary polyphenolic phytochemicals - promising cancer chemopreventive agents in humans? A review of their clinical properties. Int J Cancer 120: 451–458.CrossRefGoogle Scholar
  148. Tyl CE, Bunzel M (2012) Antioxidant activity-guided fractionation of blue wheat (UC66049 Triticum aestivum L.). J Agric Food Chem 60: 731–739.CrossRefGoogle Scholar
  149. Vanholme R, Cesarino I, Rataj K et al. (2013) Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in Arabidopsis. Science 341: 1103–1106.CrossRefGoogle Scholar
  150. Varga M, Bánhidy J, Czeuz Let al. (2013) The anthocyanin content of blue and purple coloured wheat cultivars and their hybrid generations. Cereal Res Commun 41: 284–292.CrossRefGoogle Scholar
  151. Vazquez F, Vaucheret H, Rajagopalan R et al. (2004). Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell 16: 69–79.CrossRefPubMedPubMedCentralGoogle Scholar
  152. Vélez-Bermúdez IC, Salazar-Henao JE, Fornale S et al. (2015) A MYB/ZML complex regulates wound-induced lignin genes in maize. Plant Cell 27: 3245–3259.CrossRefPubMedPubMedCentralGoogle Scholar
  153. Verdu CF, Guyot S, Childebrand N et al. (2014). QTL analysis and candidate gene mapping for the polyphenol content in cider apple. PLoS One 9: e107103.CrossRefPubMedPubMedCentralGoogle Scholar
  154. Vitaglione P, Napolitano A, Fogliano V (2008) Cereal dietary fibre: a natural functional ingredient to deliver phenolic compounds into the gut. Trends Food Sci Tech 19: 451–463.CrossRefGoogle Scholar
  155. Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3: 2–20.CrossRefPubMedPubMedCentralGoogle Scholar
  156. Vollmer KO, Reisener HJ, Grisebach H (1965) The formation of acetic acid from p-hydroxycinnamic acid during its degradation to p-hydroxybenzoic acid in wheat shoots. Biochem Biophys Res Commun 21: 221–225.CrossRefPubMedPubMedCentralGoogle Scholar
  157. Wang J, Sun B. Cao Y et al. (2008) Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chem 106: 804–810.CrossRefGoogle Scholar
  158. Wang D, Song Y, Chen Y et al. (2013) Metabolic pools of phenolic acids in Salvia miltiorrhiza are enhanced by co-expression of Antirrhinum majus Delila and Rosea1 transcription factors. Biochem Eng J 74: 115–120.CrossRefGoogle Scholar
  159. Wang P, Dudareva N, Morgan JA et al. (2015) Genetic manipulation of lignocellulosic biomass for bioenergy. Curr Opin Chem Biol 29: 32–39.CrossRefPubMedPubMedCentralGoogle Scholar
  160. Whent M, Huang H, Xie Z et al. (2012) Phytochemical composition, anti-inflammatory, and antiproliferative activity of whole wheat flour. J Agric Food Chem 60: 2129–2135.CrossRefPubMedPubMedCentralGoogle Scholar
  161. Widhalm JR, Dudareva N (2015) A familiar ring to it: biosynthesis of plant benzoic acids. Mol Plant 8: 83–97.CrossRefPubMedPubMedCentralGoogle Scholar
  162. Wu H, Haig T, Pratley J (1999) Simultaneous determination of phenolic acids and 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one in wheat (Triticum aestivum L.) by gas chromatography–tandem mass spectrometry. J Chromatogr A 864: 315–321.CrossRefPubMedPubMedCentralGoogle Scholar
  163. Xu W, Dubos C, Lepiniec L (2015) Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci 20: 176–185.CrossRefPubMedPubMedCentralGoogle Scholar
  164. Yang F, Li W, Jiang N et al. (2017) A maize gene regulatory network for phenolic metabolism. Mol Plant 10: 498–515.CrossRefPubMedPubMedCentralGoogle Scholar
  165. Yu L, Zhou K, Parry JW (2005) Inhibitory effects of wheat bran extracts on human LDL oxidation and free radicals. LWT-Food Sci Technol 38: 463–470.CrossRefGoogle Scholar
  166. Zeller FJ, Cermeno MC, Miller TE (1991) Cytological analysis on the distribution and origin of the alien chromosome pair conferring blue aleurone color in several European common wheat (Triticum aestivum L.) strains. Theor Appl Genet 81: 551–558.CrossRefPubMedPubMedCentralGoogle Scholar
  167. Zhang B, Wang Q (2015) MicroRNA-based biotechnology for plant improvement. J Cell Physiol 230: 1–15.CrossRefPubMedPubMedCentralGoogle Scholar
  168. Zhang J, Wang M, Cheng F et al. (2016). Identification of microRNAs correlated with citrus granulation based on bioinformatics and molecular biology analysis. Postharvest Biol Technol 118: 59–67.CrossRefGoogle Scholar
  169. Zhang S, Ma P, Yang D et al. (2013) Cloning and characterization of a putative R2R3 MYB transcriptional repressor of the rosmarinic acid biosynthetic pathway from Salvia miltiorrhiza. PLoS One 8: e73259.CrossRefPubMedPubMedCentralGoogle Scholar
  170. Zhang YA, Yan YP, Wang ZZ (2010) The Arabidopsis PAP1 transcription factor plays an important role in the enrichment of phenolic acids in Salvia miltiorrhiza. J Agric Food Chem 58: 12168–12175.CrossRefPubMedPubMedCentralGoogle Scholar
  171. Zhou M, Li W, Sun Z et al. (2015) Production and transcriptional regulation of proanthocyanidin biosynthesis in forage legumes. Appl Microbiol Biotechnol 99: 3797–3806.CrossRefPubMedPubMedCentralGoogle Scholar
  172. Zhou M, Zhang K, Sun Z et al. (2017) LNK1 and LNK2 co-repressors interact with the MYB3 transcription factor in phenylpropanoid biosynthesis. Plant Physiol 174: 1348–1358.CrossRefPubMedPubMedCentralGoogle Scholar
  173. Žilić S (2016) Phenolic compounds of wheat. Their content, antioxidant capacity and bioaccessibility. MOJ Food Process Technol 2: 85–89.Google Scholar
  174. Žofajová A, Pšenáková I, Havrlentová M et al. (2012) Accumulation of total anthocyanins in wheat grain. Agriculture (Pol’nohospodárstvo) 58: 50–56.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Domenica Nigro
    • 1
  • Heinrich Grausgruber
    • 2
  • Carlos Guzmán
    • 3
  • Barbara Laddomada
    • 4
    Email author
  1. 1.Department of Soil, Plant & Food Sciences, Plant Breeding SectionUniversity of BariBariItaly
  2. 2.Department of Crop SciencesUniversity of Natural Resources and Life SciencesTulln an der DonauAustria
  3. 3.Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor MendelCampus de Rabanales, Universidad de CórdobaCórdobaSpain
  4. 4.Institute of Sciences of Food ProductionLecceItaly

Personalised recommendations