Advertisement

A Space Dynamic Discovery Scheme for Crowd Flow of Urban City

  • Zhaojun Wang
  • Hao Jiang
  • Xiaoyue Zhao
  • Yuanyuan ZengEmail author
  • Yi Zhang
  • Wen Du
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11910)

Abstract

Crowd flow analysis is a important part of urban computing, which is playing an vital role in urban plan and management. This paper addresses the challenges in current population flow analysis. We propose a user space dynamic discovery method based on graph signal model. Taking the base station as a spatial node, the spatial dependence relationship between the nodes is modeled as a spatial network map. The spectral wavelet operator is applied to the spatial map signal to generate wavelet coefficients on different wavelet scales. The simulation results, show that our scheme can be used for valuable information such as the origin, spread and span of population mobility.

Keywords

Crowd flow Urban computing Graph signal model Spectral wavelet operator Wavelet coefficients 

References

  1. 1.
    Yang, S., Kalpakis, K., Biem, A.: Spatio-temporal coupled bayesian robust principal component analysis for road traffic event detection. In: 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), pp. 392–398. IEEE (2013)Google Scholar
  2. 2.
    Senaratne, H., Mueller, M., Behrisch, M., et al.: Urban mobility analysis with mobile network data: a visual analytics approach. IEEE Trans. Intell. Transp. Syst. 19(5), 1537–1546 (2018)CrossRefGoogle Scholar
  3. 3.
    Rawassizadeh, R., Momeni, E., Dobbins, C., et al.: Scalable daily human behavioral pattern mining from multivariate temporal data. IEEE Trans. Knowl. Data Eng. 28(11), 3098–3112 (2016)CrossRefGoogle Scholar
  4. 4.
    Von Landesberger, T., Brodkorb, F., Roskosch, P., et al.: MobilityGraphs: visual analysis of mass mobility dynamics via spatio-temporal graphs and clustering. IEEE Trans. Vis. Comput. Graph. 22(1), 11–20 (2016)CrossRefGoogle Scholar
  5. 5.
    Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)CrossRefGoogle Scholar
  6. 6.
    Shuman, D.I., Narang, S.K., Frossard, P., et al.: The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 30(3), 83–98 (2012)CrossRefGoogle Scholar
  7. 7.
    Hammond, D.K., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spectral graph theory. Appl. Comput. Harmon. Anal. 30(2), 129–150 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Narang, S.K., Ortega, A.: Perfect reconstruction two-channel wavelet filter banks for graph structured data. IEEE Trans. Signal Process. 60(6), 2786–2799 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Shuman, D.I., Narang, S.K., Frossard, P., et al.: The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. arXiv preprint arXiv:1211.0053 (2012)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Zhaojun Wang
    • 2
  • Hao Jiang
  • Xiaoyue Zhao
    • 1
  • Yuanyuan Zeng
    • 1
    Email author
  • Yi Zhang
    • 1
  • Wen Du
    • 1
  1. 1.Wuhan UniversityWuhanChina
  2. 2.Springer HeidelbergHeidelbergGermany

Personalised recommendations