Hybrid Model Based on Neural Networks and Fuzzy Logic for 2-Lead Cardiac Arrhythmia Classification
Abstract
We present how to combine neural networks and fuzzy logic to form a hybrid model as a classification system using 2-lead for cardiac arrhythmias. This hybrid model is used samples of electrocardiograms contained in the MIT-BIH arrhythmia database. The samples of heartbeats are extracted and transformed from the electrocardiograms of this database. The hybrid model is trained and tested with 10 different classes of normal and cardiac arrhythmias heartbeats. The hybrid model used 2 leads included in the MIT-BIH arrhythmia database. The hybrid model used two basic module units, where each unit processing one lead. The basic module unit are composite by three classifiers. Finally, we combined the output results of the two basic module unit with a fuzzy system and we have achievement increase the global classification rate in the hybrid model proposed.
Keywords
Fuzzy KNN algorithm Neural network Fuzzy system 2-lead arrhythmia classification Hybrid modelReferences
- 1.J. Amezcua, P. Melin, A modular LVQ neural network with fuzzy response integration for arrhythmia classification, in IEEE Conference on Norbert Wiener in the 21st Century (2014)Google Scholar
- 2.P. Melin, J. Amezcua, F. Valdez, O. Castillo, A new neural network model based on the LVQ algorithm for multi-class classification of arrhythmias. Inf. Sci. 279, 483–497 (2014)MathSciNetCrossRefGoogle Scholar
- 3.A.F. Khalaf, M.L. Owis, I.A. Yassine, A novel technique for cardiac arrhythmia classification using spectral correlation and support vector machines. Expert Syst. Appl. 42(21), 8361–8368 (2015). ElsevierCrossRefGoogle Scholar
- 4.M.R. Homaeinezhad, S.A. Atyabi, E. Tavakkoli, H.N. Toosi, A. Ghaffari, R. Ebrahimpour, ECG arrhythmia recognition via a neuro-SVM-KNN hybrid classifier with virtual QRS image-based geometrical features. Expert Syst. Appl. 39(2), 2047–2058 (2012). ElsevierGoogle Scholar
- 5.J.S. Wang, W.C. Chiang, Y.L. Hsu, Y.T. Yang, ECG arrhythmia classification using a probabilistic neural network with a feature reduction method. Neurocomputing 116, 38–45 (2013). ElsevierCrossRefGoogle Scholar
- 6.R.J. Martis, U.R. Achayra, H. Prasad, C.K. Chua, Application of higher order statistics for atrial arrhythmia classification. Biomed. Signal Process. Control (2013). ElsevierGoogle Scholar
- 7.D. Gaetano, S. Panunzi, F. Rinaldi, A. Risi, M. Sciandrone, A patient adaptable ECG beat classifier based on neural networks. Appl. Math. Comput. 213(1), 243–249 (2009). ElsevierGoogle Scholar
- 8.E. Ramirez, O. Castillo, J. Soria, Hybrid system for cardiac arrhythmia classification with Fuzzy K-Nearest Neighbors and neural networks combined by a fuzzy inference system, in Softcomputing for Recognition Based on Biometrics, Studies in Computational Intelligence, vol. 312 (Springer, 2010), pp. 37–53, ISBN 978-3-642-15110-1Google Scholar
- 9.M. Javadi, S.A. Asghar, A. Sajedin, R. Ebrahimpour, Classification of ECG arrhythmia by a modular neural network based on mixture of experts and negatively correlated learning. Biomed. Signal Process. Control 8, 289–296 (2013). ElsevierCrossRefGoogle Scholar
- 10.M.M. Al Rahhal, Y. Bazi, H. Alhichri, N. Alajlan, F. Melgani, R.R. Yager, Deep learning approach for active classification of electrocardiogram signals. Inf. Sci. 345, 340–354 (2016). ElsevierCrossRefGoogle Scholar
- 11.P. Melin, E. Ramirez, G. Prado-Arechiga, Cardiac arrhythmia classification using computational intelligence: neural networks and fuzzy logic techniques. European Heart J. 38, P6388 (2017). Oxford academicGoogle Scholar
- 12.P. Melin, G. Prado-Arechiga, I. Miramontes, M. Medina, A hybrid intelligent model based on modular neural network and fuzzy logic for hypertension risk diagnosis. J. Hypertens. 34 (2016)Google Scholar
- 13.S.M. Jadhav, S.L. Nalbalwar, A.A. Ghatol, ECG arrhythmia classification using modular neural network model, in IECBES (2012). ISBN 978-1-4244-7600-8Google Scholar
- 14.Y. Ozbay, G. Tezel, A new method for classification of ECG arrhythmias using neural network with adaptive activation function. Digital Signal Process. 20, 1040–1049 (2010). ElsevierCrossRefGoogle Scholar
- 15.C. Zopounidis, M. Doumpos, Multicriteria classification and sorting methods: a literature review. Eur. J. Oper. Res. 138, 229–246 (2002). ElsevierCrossRefGoogle Scholar
- 16.J.M. Keller, M.R. Gray, J.A. Givens, A fuzzy K-Nearest neighbor algorithm. IEEE Trans. Fuzzy Syst. Man Cybern. 15, 580–585 (1985)CrossRefGoogle Scholar
- 17.P. Melin, O. Castillo, A review of the applications of type-2 fuzzy logic in classification and pattern recognition. Expert Syst. Appl. 40(13), 5413–5423 (2013)CrossRefGoogle Scholar
- 18.P. Melin, O. Castillo, A review on the applications of type-2 fuzzy logic in classification and pattern recognition. Expert Syst. Appl. 40, 5413–5423 (2013). ElsevierCrossRefGoogle Scholar
- 19.R. Ceylan, Y. Ozbay, B. Karlik, A novel approach for classification of ECG arrhythmias: type-2 fuzzy clustering neural network. Expert Syst. Appl. 36(3), 6721–6727 (2009). ACMCrossRefGoogle Scholar
- 20.T.W. Chua, W.W. Tan, Interval type-2 fuzzy system for ECG arrhythmia classification, in Fuzzy Systems in Bioinformatics and Computational Biology, vol. 242 (2009, Springer), pp. 297–314. ISBN 978-3-540-89968-6Google Scholar
- 21.W.W. Tan, C.L. Foo, T. Chua, Type-2 fuzzy system for ECG arrhythmic classification, in FYZZ-IEEE (2007). ISBN 1-4244-1209-9Google Scholar
- 22.Y. Ozbay, R. Ceylan, B. Karlik, A fuzzy clustering neural network architecture for classification of ECG arrhythmias. Comput. Biol. Med. 36, 376–388 (2005). ElsevierCrossRefGoogle Scholar
- 23.E.J.S. Luz, W.R. Schwartz, G. Camara-Chavez, D. Menotti, ECG-based heartbeat classification for arrhythmia detection: a survey. Comput. Methods Programs Biomed. 127, 144–164 (2015). ElsevierCrossRefGoogle Scholar
- 24.M. Wozniak, M. Grana, E. Corchado, A survey of multiple classifier systems as hybrid systems. Inf. Fusion 16, 3–17 (2014). ElsevierCrossRefGoogle Scholar
- 25.M.S.A. Megat, A.H. Jahidin, A.N. Norall, Hybrid multilayered perceptron network classification of bundle branch blocks, in IEEE 2012 International Conference on Biomedical Engineering Icobe. ISBN 978-1-4577-1991-2Google Scholar
- 26.O. Castillo, P. Melin, E. Ramirez, J. Soria, Hybrid intelligent system for cardiac arrhythmia classification with fuzzy K-Nearest Neighbors and neural networks combined with a fuzzy system. Expert Syst. Appl. 39, 2947–2955 (2012)CrossRefGoogle Scholar
- 27.S. Osowki, T. Markiewicz, L.T. Hoal, Recognition and classification systems of arrhythmia using ensemble of neural networks. Measurement 41(6), 610–617 (2018). ElsevierGoogle Scholar
- 28.S. Osowksi, K. Siwek, R. Siroic, Neural system for heartbeats recognition using genetically integrated ensemble of classifiers. Comput. Biol. Med. 41(3), 173–180 (2011). ElsevierGoogle Scholar
- 29.T.M. Nazmy, H. EL-Messiry, B. AL-Bokhity, Classification of cardiac arrhythmia based on hybrid system. Int. J. Comput. Appl. 2 (2010)CrossRefGoogle Scholar
- 30.Y.E. Shao, C.D. Hou, C.C. Chiu, Hybrid intelligent modeling schemes for heart disease classification. Appl. Soft Comput. 14, 47–52 (2014). ElsevierCrossRefGoogle Scholar
- 31.F.A. Elhaj, N. Salim, A.R. Harris, T.T. Swee, T. Ahmed, Arrhytmia recognition and classification using combined linear and nonlinear features of ECG signals. Comput. Methods Programs Biomed. 127, 52–63 (2016). ElsevierCrossRefGoogle Scholar
- 32.A. Gacek, W. Pedrycz, in ECG Signal Processing, Classification and Interpretation, a Comprehensive Framework of Computational Intelligence (Springer, 2012). ISBN 978-0-85729-867-6Google Scholar
- 33.A. Jovic, N. Bogunovic, Evaluating and comparing performance of feature combinations of heart rate variability measures for cardiac rhythm classification. Biomed. Signal Process. Control 7, 245–255 (2012). ElsevierCrossRefGoogle Scholar
- 34.R.J. Martis, U.R. Achayra, L.C. Min, ECG beat classification using PCA, LDA, ICA, and discrete wavelet transform. Biomed. Signal Process. Control 8, 437–448 (2013). ElsevierCrossRefGoogle Scholar
- 35.R. Jayasinghe, in ECG Workbook (Churchill Livingstone, Elsevier, 2012). ISBN 978-0-7295-4109-1Google Scholar
- 36.J.L. Martindale, D.F.M. Brown, in A Visual Guide to ECG Interpretation, 2nd edn. (Wolters Kluwer, 2017), ISBN 978-1-4963-2153-4Google Scholar
- 37.J.R. Hampton, D. Adlam, in The ECG in Practice, 6th edn. (Churchill Livingstone, Elsevier, 2013), ISBN 978-0-7020-4643-8Google Scholar
- 38.C.M. Bishop, in Neural Network for Pattern Recognition (Oxford, UK, Clarendon Press)Google Scholar
- 39.C. Leal Ramírez, O. Castillo, P. Melin, A. Rodríguez Díaz, Simulation of the bird age-structured population growth based on an interval type-2 fuzzy cellular structure. Inf. Sci. 181(3), 519–535 (2011)MathSciNetCrossRefGoogle Scholar
- 40.N.R. Cázarez-Castro, L.T. Aguilar, O. Castillo, Designing Type-1 and Type-2 fuzzy logic controllers via Fuzzy Lyapunov Synthesis for nonsmooth mechanical systems. Eng. Appl. AI 25(5), 971–979 (2012)CrossRefGoogle Scholar
- 41.O. Castillo, P. Melin, Intelligent systems with interval type-2 fuzzy logic. Int. J. Innov. Comput. Inf. Control 4(4), 771–783 (2008)Google Scholar
- 42.G.M. Mendez, O. Castillo, Interval type-2 TSK fuzzy logic systems using hybrid learning algorithm, in The 14th IEEE International Conference on Fuzzy Systems, FUZZ’05 (2005), pp. 230–235Google Scholar
- 43.P. Melin, O. Castillo, Intelligent control of complex electrochemical systems with a neuro-fuzzy-genetic approach. IEEE Trans. Ind. Electron. 48(5), 951–955 (2001)CrossRefGoogle Scholar
- 44.E. Rubio, O. Castillo, F. Valdez, P. Melin, C. I. González, G. Martinez, An extension of the fuzzy possibilistic clustering algorithm using type-2 fuzzy logic techniques. Adv. Fuzzy Syst. 2017, 7094046:1–7094046:23 (2017)CrossRefGoogle Scholar
- 45.L. Aguilar, P. Melin, O. Castillo, Intelligent control of a stepping motor drive using a hybrid neuro-fuzzy ANFIS approach. Appl. Soft Comput. 3(3), 209–219 (2003)CrossRefGoogle Scholar
- 46.Patricia Melin, Oscar Castillo, Adaptive intelligent control of aircraft systems with a hybrid approach combining neural networks, fuzzy logic and fractal theory. Appl. Soft Comput. 3(4), 353–362 (2003)CrossRefGoogle Scholar