Advertisement

Fuzzy Flower Pollination Algorithm to Solve Control Problems

  • Hector Carreon
  • Fevrier ValdezEmail author
  • Oscar Castillo
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 827)

Abstract

Pollination is an essential process for the proper functioning of ecosystems and the production of food, through the transfer of pollen. Knowing these mechanisms, the Flower Pollination Algorithm (FPA) was developed in 2012 by Yang (Nature-inspired optimization algorithms. Elsevier, London-New York, pp 155–173, 2014 [1]). The Fuzzy Flower Pollination Algorithm (FFPA) was tested on two optimization problems: (1) Optimization of 8 mathematical functions: Sphere, Ackley, Rastrigin, Zakharov, Griewank, Sum of Different Powers, Michalewicz and Rosenbrock, for 30 and 100 dimensions. (2) Optimization of the fuzzy controller. For the water tank plant. The FFPA method obtained excellent results when compared with other bioinspired algorithms such as BCO and PSO, knowing that the FPA is relatively new in the field of collective intelligence, it opens a very promising area of research.

Keywords

Flower pollination algorithm Fuzzy flower pollination algorithm Fuzzy logic Bio-inspired algorithm Pollination 

References

  1. 1.
    X.-S. Yang, Flower pollination algorithms, in Nature-Inspired Optimization Algorithms (Elsevier, London-New York, 2014), pp. 155–173CrossRefGoogle Scholar
  2. 2.
    J.A. Moreno Pérez, Metaheurísticas: Concepto y Propiedades (Universidad de la Laguna, Spain, Tenerife, 2004)Google Scholar
  3. 3.
    M. Macías, I. Tutor, J.F. Jiménez, A. Tutor, Andrés, S. Pérez, Estudio Comparativo de Técnicas de Optimización para la Actualización de Modelos de Elementos Finitos, 2016, Universidad de Sevilla, Spain, SevillaGoogle Scholar
  4. 4.
    X. Yang, M. Karamanoglu, X. He, X. Yang, M. Karamanoglu, X. He, Flower pollination algorithm: a novel approach for multiobjective optimization. Eng. Optim. 00, 1–16 (2014)MathSciNetGoogle Scholar
  5. 5.
    M. Garc, L. Alberto, La polinización en los sistemas de producción agrícola: revisión sistemática de la literatura Pollination in agricultural systems: a systematic literature review (IDESIA, Chile, 2016), pp. 53–68Google Scholar
  6. 6.
    D.P. Abrol, Pollination Biology: Biodiversity Conservation and Agricultural Production (Springer, Dordrecht Heidelberg, London, New York, 2012)Google Scholar
  7. 7.
    X.-S. Yang, Flower pollination algorithm for global optimization, in Unconventional Computation and Natural Computation Lecture Notes Computer Science, vol. 7445 (Springer, Heidelberg Dordrecht London, New York, 2012), pp. 240–249CrossRefGoogle Scholar
  8. 8.
    A.F. Kamaruzaman, A.M. Zain, S.M. Yusuf, A. Udin, Levy flight algorithm for optimization problems—a literature review. Appl. Mech. Mater. 421, 496–501 (2013)CrossRefGoogle Scholar
  9. 9.
    X.-S. Yang, Random walks and optimization, in Nature-Inspired Optimization Algorithms (Elsevier, London, 2014), pp. 45–65CrossRefGoogle Scholar
  10. 10.
    X.-S. Yang, Engineering Optimization An Introduction with Metaheuristic Applications (Wiley, New Jersey, 2010)CrossRefGoogle Scholar
  11. 11.
    S.D. Madasu, M.L.S. Sai Kumar, A.K. Singh, A flower pollination algorithm based automatic generation control of interconnected power system. Ain Shams Eng. J. (2015)Google Scholar
  12. 12.
    R. Berenji, Hamid, in An Introduction to Fuzzy Logic Applications in Intelligent Systems (The Kluwer International Series in Engineering and Computer Science, Springer Science + Business Media New York, 1992)Google Scholar
  13. 13.
    J. R. Jang, C. Sun, Neuro Fuzzy and Soft Computing A Computational Approach to Learning and Machine intelligence, ed. by J. Jyh-Shing Roger (Prentice-Hall, Inc., Upper Saddle River, NJ, 1997)Google Scholar
  14. 14.
    L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-I. Inf. Sci. (Ny). 8(3), 199–249 (1975)MathSciNetCrossRefGoogle Scholar
  15. 15.
    R. Sepulveda, R; Montiel, O. Castillo, O. Melin, Fundamentos de Logica Difusa, vol. 2002 (Ediciones ILCSA, Tijuana, B. C., México, 2002)Google Scholar
  16. 16.
    R.L. Haupt, S.E. Haupt, Practical Genetic Algorithms, 2nd edn. (Wiley Interscience, New Jersey, 2004)zbMATHGoogle Scholar
  17. 17.
    D.G. Mayer, B.P. Kinghorn, A.A. Archer, Differential evolution—an easy and efficient evolutionary algorithm for model optimisation. Agric. Syst. 83(3), 315–328 (2005)CrossRefGoogle Scholar
  18. 18.
    S.P. Lim, H. Haron, Performance comparison of genetic algorithm, differential evolution and particle swarm optimization towards benchmark functions, in 2013 IEEE Conference Open System, no. (Research Gate, Sarawak Malaysia, 2013), pp. 41–46Google Scholar
  19. 19.
    L. Valenzuela, F. Valdez, P. Melin, Nature-inspired design of hybrid intelligent systems, flower pollination algorithm with fuzzy approach for solving optimization problems, in Studies in Computational Intelligence, vol. 667 (Springer International Publishing, Switzerland, 2017)Google Scholar
  20. 20.
    L. Reznik, L. Reznik, Fuzzy controllers, in Victoria University of Technology Melbourne, Australia (Butterworth Heinemann Newnes, Oxford, 1997), p. 287Google Scholar
  21. 21.
    L.-X. Wang, A course in fuzzy systems and control, in Design, (Prentice-Hall International, Inc., 1997), p. 448 Google Scholar
  22. 22.
    R. Larson, B. Farber, Elementary Statistics Fifth Edition (Prentice-Hall, 2013)Google Scholar
  23. 23.
    C.P. Lim, L.C. Jain, S. Dehuri, Studies in Computational Intelligence: Innovations in Swarm Intelligence, vol. 248 (Springer, Berlin Heidelberg, 2009)CrossRefGoogle Scholar
  24. 24.
    M. Couceiro, P. Ghamisi, Fractional Order Darwinian Particle Swarm Optimization Applications and Evaluation of an Evolutionary Algorithm (Springer Briefs in Applied Sciences and Technology, Springer Cham Heidelberg New York Dordrecht London, 2016)Google Scholar
  25. 25.
    C. Caraveo, F. Valdez, O. Castillo, Optimization of fuzzy controller design using a new bee colony algorithm with fuzzy dynamic parameter adaptation. Appl. Soft Comput. J. 43, 131–142 (2016)CrossRefGoogle Scholar
  26. 26.
    C.I. González, P. Melin, J.R. Castro, Olivia Mendoza, O. Castillo, An improved sobel edge detection method based on generalized type-2 fuzzy logic. Soft. Comput. 20(2), 773–784 (2016)CrossRefGoogle Scholar
  27. 27.
    C.I. González, P. Melin, J.R. Castro, O. Castillo, O. Mendoza, Optimization of interval type-2 fuzzy systems for image edge detection. Appl. Soft Comput. 47, 631–643 (2016)CrossRefGoogle Scholar
  28. 28.
    E. Ontiveros, P. Melin, O. Castillo, High order α-planes integration: a new approach to computational cost reduction of general type-2 fuzzy systems. Eng. Appl. AI 74, 186–197 (2018)CrossRefGoogle Scholar
  29. 29.
    P. Melin, A. Mancilla, M. Lopez, O. Mendoza, A hybrid modular neural network architecture with fuzzy Sugeno integration for time series forecasting. Appl. Soft Comput. 7(4), 1217–1226 (2007)CrossRefGoogle Scholar
  30. 30.
    P. Melin, O. Castillo, Modelling, Simulation and Control of Non-Linear Dynamical Systems: An Intelligent Approach Using Soft Computing and Fractal Theory (CRC Press, 2001)Google Scholar
  31. 31.
    P. Melin, D. Sánchez, O. Castillo, Genetic optimization of modular neural networks with fuzzy response integration for human recognition. Inf. Sci. 197, 1–19 (2012)CrossRefGoogle Scholar
  32. 32.
    P. Melin, I. Miramontes, G. Prado-Arechiga, A hybrid model based on modular neural networks and fuzzy systems for classification of blood pressure and hypertension risk diagnosis. Expert Syst. Appl. 107, 146–164 (2018)CrossRefGoogle Scholar
  33. 33.
    P. Melin, D. Sánchez, Multi-objective optimization for modular granular neural networks applied to pattern recognition. Inf. Sci. 460–461, 594–610 (2018)MathSciNetCrossRefGoogle Scholar
  34. 34.
    D. Sánchez, P. Melin, O. Castillo, Optimization of modular granular neural networks using a firefly algorithm for human recognition. Eng. Appl. AI 64, 172–186 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hector Carreon
    • 1
  • Fevrier Valdez
    • 1
    Email author
  • Oscar Castillo
    • 1
  1. 1.Tijuana Institute of TechnologyTijuanaMexico

Personalised recommendations