Teaching the Complexity of Urban Systems with Participatory Social Simulation

  • Timo Szczepanska
  • Max Priebe
  • Tobias Schröder
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)


We describe how we use social simulation as a core method in a new master’s program designed to teach future leaders of urban change to deal with the complexity inherent in current societal transformations. We start by depicting the challenges with regard to cross-disciplinary knowledge integration and overcoming value-based, rigid thinking styles that inevitably arise in the process of solving ecological, technological, or social problems in cities new and old. Next, we describe a course based on urban modeling and participatory approaches, designed to meet those challenges. We reflect on our first experience with this approach and discuss future developments and research needs.


Urbanization Complexity Systems thinking Higher education Participatory modeling 



We acknowledge funding from the European Funds for Regional Development, grant number 85009319.


  1. 1.
    UN-Habitat (United Nations Human Settlement Programme). World Cities Report 2016. Urbanization and Development: Emerging Futures (2016).
  2. 2.
    Batty, M.: The New Science of Cities. MIT Press, Cambridge, MA (2013)CrossRefGoogle Scholar
  3. 3.
    Wilson, A.G.: Complex Spatial Systems: The Modelling Foundations of Urban and Regional Analysis. Pearson Education, Harlow (2000)Google Scholar
  4. 4.
    Crooks, A.T., Malleson, N., Wise, S., Heppenstall, A.: Big data, agents and the city. In: Schintler, L.A., Chen, Z. (eds.) Big Data for Urban and Regional Science, pp. 204–213. Routledge, New York (2018)Google Scholar
  5. 5.
    Burdett, R., Sudjic, D.: The Endless City. Phaidon, London (2006)Google Scholar
  6. 6.
    Prytula, M., Schröder, T., Dörk, M., Ortgiese, M., Michel, A., Neuroth, H., Lehmann, J.: Transformation lernen: Der Masterstudiengang Urbane Zukunft an der Fachhochschule Potsdam. Transform. Cities. 3, 76–79 (2016)Google Scholar
  7. 7.
    Ihde, D.: Models, Models Everywhere. In: Lenhard, J., Küppers, G., Shinn, T. (eds.) Simulation. Sociology of the Sciences Yearbook, vol. 2, pp. 79–86. Springer, Dordrecht (2006). CrossRefGoogle Scholar
  8. 8.
    Epstein, J.M.: Why model? J. Artif. Soc. Soc. Simul. 11(4), 12 (2008). Google Scholar
  9. 9.
    Tetlock, P.E., Gardner, D.: Superforecasting: The Art and Science of Prediction. Random House, London (2015)Google Scholar
  10. 10.
    Pinker, S.: Enlightenment Now: The Case for Reason, Science, Humanism, and Progress. Penguin, London (2018)Google Scholar
  11. 11.
    Miller, G.: Roots of the urban mind. Science. 352(6288), 908–911 (2016). CrossRefGoogle Scholar
  12. 12.
    Rittel, H.W.J., Webber, M.M.: Dilemmas in a general theory of planning. Policy. Sci. 4, 155–169 (1973). CrossRefGoogle Scholar
  13. 13.
    Schneidewind, U.: Transformative Wissenschaft-Motor für gute Wissenschaft und lebendige Demokratie. GAIA-Ecol. Perspect. Sci. Soc. 24(2), 88–91 (2015). CrossRefGoogle Scholar
  14. 14.
    Mieg, H.A., Lehmann, J.: Forschendes Lernen: Wie die Lehre in Universität und Fachhochschule erneuert werden kann. Campus-Verlag, Frankfurt (Main) (2017)Google Scholar
  15. 15.
    Scholz, R.W., Lang, D.J., Wiek, A., Walter, A.I., Stauffacher, M.: Transdisciplinary case studies as a means of sustainability learning: historical framework and theory. Int. J. Sustain. High. Educ. 7(3), 226–251 (2006). CrossRefGoogle Scholar
  16. 16.
    Priebe, M., Szczepanska, T., Schröder, T., Prytula, M., Dörk, M.: Potentiale partizipativer Systemmodellierung in Brandenburger Kommunen. IaF Working Paper (2017).
  17. 17.
    Batty, M.: Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based Models, and Fractals. MIT Press, Cambridge (2005)Google Scholar
  18. 18.
    Iltanen, S.: Cellular automata in urban spatial modeling. In: Heppenstall, A.J., Crooks, A.T., See, L.M., Batty, M. (eds.) Agent-Based Models of Geographical Systems, pp. 69–84. Springer, Dordrecht (2012). CrossRefGoogle Scholar
  19. 19.
    Batty, M., Xie, Y., Sun, Z.: Modeling urban dynamics through GIS-based cellular automata. Comput. Environ. Urban. Syst. 233, 205–233 (1999). CrossRefGoogle Scholar
  20. 20.
    White, R., Engelen, G.: Cellular-automata and fractal urban form - a cellular modeling approach to the evolution of urban land-use patterns. Environ. Plan. A. 25(8), 1175–1199 (1993). CrossRefGoogle Scholar
  21. 21.
    Benenson, I., Torrens, P.M.: Geosimulation: Automata-Based Modeling of Urban Phenomena. Wiley, London (2004). CrossRefGoogle Scholar
  22. 22.
    Batty, M., Crooks, A.T., See, L.M., Heppenstall, A.J.: Perspectives on agent-based models and geographical systems. In: Heppenstall, A.J., Crooks, A.T., See, L.M., Batty, M. (eds.) Agent-Based Models of Geographical Systems, pp. 1–15. Springer, Dordrecht (2012). CrossRefGoogle Scholar
  23. 23.
    Felsen, M., Wilensky, U.: NetLogo Urban Suite – Sprawl Effect Model. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston (2007). Google Scholar
  24. 24.
    O’Sullivan, D., Millington, J., Perry, G., Wainwright, J.: Agent-based models – because they’re worth it? In: Heppenstall, A., Crooks, A., See, L., Batty, M. (eds.) Agent-Based Models of Geographical Systems, pp. 109–123. Springer, Dordrecht (2012). CrossRefGoogle Scholar
  25. 25.
    Taillandier, P., Vo, D.A., Amouroux, E., Drogoul, A.: GAMA: a simulation platform that integrates geographical information data, agent-based modeling and multi-scale control. In: Desai, N., Liu, A., Winikoff, M. (eds.) Principles and Practice of Multi-Agent Systems. PRIMA 2010. Lecture Notes in Computer Science, vol. 7057, pp. 242–258. Springer, Berlin, Heidelberg (2012). CrossRefGoogle Scholar
  26. 26.
    Miller, J.H., Page, S.E.: Complex Adaptive Systems: An Introduction to Computational Models of Social Life. Princeton University Press, Princeton (2007)zbMATHGoogle Scholar
  27. 27.
    Grimm, V., Polhill, G., Touza, J.: Documenting social simulation models: the ODD protocol as a standard. In: Edmonds, B., Meyer, R. (eds.) Simulating Social Complexity. Understanding Complex Systems, pp. 117–133. Springer, Berlin, Heidelberg (2013). CrossRefGoogle Scholar
  28. 28.
    Edmonds, B., Meyer, R.: Simulating Social Complexity: A Handbook. Springer, Berlin, Heidelberg (2013). zbMATHCrossRefGoogle Scholar
  29. 29.
    Crooks, A.T., Heppenstall, A.J.: Introduction to agent-based modeling. In: Heppenstall, A.J., Crooks, A.T., See, L.M., Batty, M. (eds.) Agent-Based Models of Geographical Systems, pp. 85–105. Springer, Dordrecht (2012). CrossRefGoogle Scholar
  30. 30.
    Wilensky, U., Rand, W.: An Introduction to Agent-Based Modeling: Modeling Natural, Social, and Engineered Complex Systems with NetLogo. MIT Press, Cambridge (2015)Google Scholar
  31. 31.
    Schelling, T.: Micromotives and Macrobehavior. W. W. Norton, London & New York (1978)Google Scholar
  32. 32.
    Axelrod, R.: The dissemination of culture, a model with local convergence and global polarization. J. Confl. Resolut. 41, 203–226 (1997). CrossRefGoogle Scholar
  33. 33.
    Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J., Grand, T., Heinz, S., Huse, G., Huth, A., Jepsen, J.U., Jørgensen, C., Mooij, W.M., Müller, B., Peer, G., Piou, C., Railsback, S.F., Robbins, A.M., Robbins, M.M., Rossmanith, E., Rüger, N., Strand, E., Souissi, S., Stillman, R.A., Vabø, R., Visser, U., DeAngelis, D.L.: A standard protocol for describing individual-based and agent-based models. Ecol. Model. 198, 115–126 (2006). CrossRefGoogle Scholar
  34. 34.
    Grimm, V., Berger, U., DeAngelis, D.L., Polhill, G., Giske, J., Railsback, S.F.: The ODD protocol: a review and first update. Ecol. Model. 221, 2760–2768 (2010). CrossRefGoogle Scholar
  35. 35.
    Vennix, J.: Group Model Building: Facilitating Team Learning Using System Dynamics. Wiley, New York (1996)Google Scholar
  36. 36.
    Etienne, M.: Companion Modelling: A Participatory Approach to Support Sustainable Development. Springer, Dordrecht (2014). CrossRefGoogle Scholar
  37. 37.
    Williams, R.A.: Lessons learned on development and application of agent-based models of complex dynamical systems. Simul. Model. Pract. Theory. 83, 201–212 (2017). CrossRefGoogle Scholar
  38. 38.
    Verhagen, H., Johansson, M., Jager, W.: Games and online research methods. In: Fielding, N., Lee, R., Blank, G. (eds.) The SAGE Handbook of Online Research Methods, 2nd edn. SAGE Publications Inc., London (2017). CrossRefGoogle Scholar
  39. 39.
    Gugerell, K., Zuidema, C.: Gaming for the energy transition. Experimenting and learning in co-designing a serious game prototype. J. Clean. Prod. 169, 105–116 (2017). CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Timo Szczepanska
    • 1
  • Max Priebe
    • 1
  • Tobias Schröder
    • 1
  1. 1.University of Applied Sciences PotsdamPotsdamGermany

Personalised recommendations