A Fast Adaptive Subpixel Extraction Method for Light Stripe Center

  • Wei Zou
  • Zhenzhong WeiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11901)


Aiming at the problem of light stripe distribution uneven and large curvature variation, which results in wrong stripe center extraction, a fast light stripe center extraction method based on the adaptive template is proposed. Firstly, the adaptive threshold method is used to reduce the image convolution area, and the multi-thread parallel operation is used to improve the speed of extracting the light stripe center. Secondly, the multi-direction template method is used to estimate the width of the light stripe along the normal direction, so that the size of the Gaussian template can be automatically obtained. Finally, the Hessian matrix eigenvalues are normalized to eliminate the multiple light stripe centers at both ends of the light stripe, and avoid extracting the wrong light stripe centers at the intersection position or the large curvature change, thus ensuring the continuity of the light stripe. This method has fast processing speed, good robustness, and high precision. It is very suitable for vision measurement image, medical image, and remote sensing image.


Light stripe center Image extraction Hessian matrix Normalization Gussian filter 



National Science Fund for Distinguished Young Scholars of China (51625501).


  1. 1.
    Liu, Z., Li, X.J., Yin, Y.: On-site calibration of line-structured light vision sensor in complex light environments. Opt. Express 23(23), 248310–248326 (2015)Google Scholar
  2. 2.
    O’Toole, M., Mather, J., Kutulakos, K.N.: 3D shape and indirect appearance by structured light transport. IEEE Trans. Pattern Anal. Mach. Intell. 38(7) (2016)Google Scholar
  3. 3.
    Lilienblum, E., Al-Hamadi, A.: A structured light approach for 3-D surface reconstruction with a stereo line-scan system. IEEE Trans. Instrum. Meas. 64(5) (2015)CrossRefGoogle Scholar
  4. 4.
    Zhang, S., Yau, S.: Absolute phase-assisted three-dimensional data registration for a dual-camera structured light system. Appl. Opt. 47(17), 3134–3142 (2008)CrossRefGoogle Scholar
  5. 5.
    Liu, Z., Li, F., Huang, B., Zhang, G.: Real-time and accurate rail wear measurement method and experimental analysis. J. Opt. Soc. Am. A 31(8), 1721–1729 (2014)CrossRefGoogle Scholar
  6. 6.
    Gong, Z., Sun, J., Zhang, G.: Dynamic structured-light measurement for wheel diameter based on the cycloid constraint. Appl. Opt. 55(1), 198–207 (2016)CrossRefGoogle Scholar
  7. 7.
    Xiong, G., Zhou, X., Degterev, A., Ji, L.: Automated neurite labeling and analysis in fluorescence microscopy images. Cytometry Part A 69, 494–505 (2006)CrossRefGoogle Scholar
  8. 8.
    Faizal, K.Z., Kavitha, V.: An effective segmentation approach for lung CT images using histogram thresholding with EMD refinement. In: Sathiakumar, S., Awasthi, L., Masillamani, M., Sridhar, S. (eds.) Internet Computing and Information Communications. AISC, vol. 216, pp. 483–489. Springer, New Delhi (2014). Scholar
  9. 9.
    Bae, K.T., Kim, J.S., Na, Y.H., et al.: Pulmonary nodules: automated detection on CT images with morphologic matching algorithm-preliminary results. Radiology 236(1), 286–293 (2005)CrossRefGoogle Scholar
  10. 10.
    Jonathan, L., Evan, S., Trevor, D.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017)CrossRefGoogle Scholar
  11. 11.
    Idris, S.A., Jafar, F.A.: Image enhancement filter evaluation on corrosion visual inspection. In: Sulaiman, H.A., Othman, M.A., Othman, M.F.I., Rahim, Y.A., Pee, N.C. (eds.) Advanced Computer and Communication Engineering Technology. LNEE, vol. 315, pp. 651–660. Springer, Cham (2015). Scholar
  12. 12.
    Cai, W., Dong, A., Zhang, X.: Crack width detection of the concrete surfaced based on images. In: Wu, Y. (ed.) Advances in Computer, Communication, Control and Automation. LNEE, vol. 121, pp. 625–632. Springer, Heidelberg (2011). Scholar
  13. 13.
    Hinz, S., Baumgartner, A.: Automatic extraction of urban road networks from multi-view aerial imagery ISPRS. J. Photogramm. Remote Sens. 23, 83–98 (2003)CrossRefGoogle Scholar
  14. 14.
    Hinz, S., Wiedemann, C.: Increasing efficiency of road extraction by self-diagnosis photogramm. Eng. Remote Sens. 70, 1457–1466 (2004)Google Scholar
  15. 15.
    Canny, J.: A computational approach to edge detection. IEEE. Trans. Pattern Anal. 6, 679–698 (1986)CrossRefGoogle Scholar
  16. 16.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE. Trans. Pattern Anal. 12, 629–639 (1990)CrossRefGoogle Scholar
  17. 17.
    Weijer, J.V.D., Gevers, T., Geusebroek, J.M.: Edge and corner detection by photometric quasi-invariants. IEEE. Trans. Pattern Anal. 27, 625–630 (2005)CrossRefGoogle Scholar
  18. 18.
    Tsai, L.W., Hsieh, J.W., Fan, K.C.: Vehicle detection using normalized color and edge map. IEEE Trans. Image Process. 16, 850–864 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Suárez, J.P., Carey, G.F., Plaza, A.: Graph-based data structures for skeleton-based refinement algorithms. Commun. Numer. Methods Eng. 17(12), 903–910 (2001)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ziou, D.: Line detection using an optimal IIR filter. Pattern Recogn. 24, 465–478 (1991)CrossRefGoogle Scholar
  21. 21.
    Laligant, O., Truchetet, F.: A nonlinear derivative scheme applied to edge detection. IEEE. Trans. Pattern Anal. 32, 242–257 (2010)CrossRefGoogle Scholar
  22. 22.
    Shortis, M.R., Clarke, T.A., Short, T.: A comparison of some techniques for the subpixel location of discrete target images. In: Proceedings of the SPIE, vol. 2350, pp. 239–250 (1994)Google Scholar
  23. 23.
    Luengo-Oroz, M.A., Faure, E., Angulo, J.: Robust iris segmentation on uncalibrated noisy images using mathematical morphology. Image Vis. Comput. 28, 278–284 (2010)CrossRefGoogle Scholar
  24. 24.
    Xu, G.S.: Sub-pixel edge detection based on curve fitting. In: Proceedings of the Second International Conference on Information and Computing Science (Ulsan, Korea, September 2009), pp. 373–375 (2009)Google Scholar
  25. 25.
    Goshtasby, A., Shyu, H.L.: Edge detection by curve fitting. Image Vis. Comput. 13, 169–177 (1995)CrossRefGoogle Scholar
  26. 26.
    Steger, C.: An unbiased detector of curvilinear structures. IEEE Trans. Pattern Anal. 20, 113–125 (1998)CrossRefGoogle Scholar
  27. 27.
    Qi, L., Zhang, Y., Zhang, X., Wang, S., Xie, F.: Statistical behavior analysis and precision optimization for the laser stripe center detector based on Steger’s algorithm. Opt. Express 21, 13442–13449 (2013)CrossRefGoogle Scholar
  28. 28.
    Lemaitre, C., Perdoch, M., Rahmoune, A., Matas, J., Miteran, J.: Detection and matching of curvilinear structures. Pattern Recogn. 44, 1514–1527 (2011)CrossRefGoogle Scholar
  29. 29.
    Hu, K., Zhou, F.Q., Zhang, G.J.: Fast extraction method for sub-pixel center of strcutured light stripe. Chin. J. Sci. Instrum. 27(10), 1326–1329 (2006)Google Scholar
  30. 30.
    Wang, S., Ye, A., Hao, G.: Autonomous pallet localization and picking for industrial forklifts based on the line structured light. In: IEEE International Conference on Mechatronics and Automation (2016)Google Scholar
  31. 31.
    Xie, F., Zhang, Y., Wang, S., et al.: Robust extrication method for line structured-light stripe. Optik 124(23), 6400–6403 (2013)CrossRefGoogle Scholar
  32. 32.
    Guan, X., Sun, L., Li, X., Su, J., Hao, Z., Lu, X.: Global calibration and equation reconstruction methods of a three dimensional curve generated from a laser plane in vision measurement. Optics Express 22(18), 22043 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Key Laboratory of Precision Opto-mechatronics Technology, Ministry of EducationBeihang UniversityBeijingChina

Personalised recommendations