Advertisement

Learning Cross Camera Invariant Features with CCSC Loss for Person Re-identification

  • Zhiwei Zhao
  • Bin LiuEmail author
  • Weihai Li
  • Nenghai Yu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11901)

Abstract

Person re-identification (re-ID) is mainly deployed in the multi-camera surveillance scene, which means that learning cross camera invariant features is highly required. In this paper, we propose a novel loss named Cross Camera Similarity Constraint loss (CCSC loss), which makes full use of the camera ID information and the person ID information simultaneously to construct cross camera image pairs and performs cosine similarity constraint on them. The proposed CCSC loss effectively reduces the intra-class variance through forcing the whole network to extract cross camera invariant features, and it can be unified with identification loss in a multi-task manner. Extensive experiments implemented on the standard benchmark datasets including CUHK03, DukeMTMC-reid, Market-1501 and MSMT17 indicate that the proposed CCSC loss can bring a large performance boost on the strong baseline and it is also superior to other metric learning methods such as hard triplet loss and center loss. For instance, on the most challenging dataset CUHK03-Detect, Rank-1 accuracy and mAP are improved by 10.0% and 10.2% than the baseline respectively and simultaneously obtain a comparable performance with the state-of-the-art method.

Keywords

Person re-identification CCSC loss Cross camera 

References

  1. 1.
    Chen, W., Chen, X., Zhang, J., Huang, K.: Beyond triplet loss: a deep quadruplet network for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 403–412 (2017)Google Scholar
  2. 2.
    Chen, W., Chen, X., Zhang, J., Huang, K.: A multi-task deep network for person re-identification. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)Google Scholar
  3. 3.
    Cheng, D., Gong, Y., Zhou, S., Wang, J., Zheng, N.: Person re-identification by multi-channel parts-based CNN with improved triplet loss function. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1335–1344 (2016)Google Scholar
  4. 4.
    Dai, Z., Chen, M., Zhu, S., Tan, P.: Batch feature erasing for person re-identification and beyond. arXiv preprint arXiv:1811.07130 (2018)
  5. 5.
    Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)Google Scholar
  6. 6.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)Google Scholar
  7. 7.
    Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. arXiv preprint arXiv:1703.07737 (2017)
  8. 8.
    Kalayeh, M.M., Basaran, E., Gökmen, M., Kamasak, M.E., Shah, M.: Human semantic parsing for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1062–1071 (2018)Google Scholar
  9. 9.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
  10. 10.
    Li, W., Zhao, R., Xiao, T., Wang, X.: Deepreid: deep filter pairing neural network for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 152–159 (2014)Google Scholar
  11. 11.
    Li, W., Zhu, X., Gong, S.: Person re-identification by deep joint learning of multi-loss classification. arXiv preprint arXiv:1705.04724 (2017)
  12. 12.
    Li, W., Zhu, X., Gong, S.: Harmonious attention network for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2285–2294 (2018)Google Scholar
  13. 13.
    Li, Z., Chang, S., Liang, F., Huang, T.S., Cao, L., Smith, J.R.: Learning locally-adaptive decision functions for person verification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3610–3617 (2013)Google Scholar
  14. 14.
    Liao, S., Hu, Y., Zhu, X., Li, S.Z.: Person re-identification by local maximal occurrence representation and metric learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2197–2206 (2015)Google Scholar
  15. 15.
    Liu, H., Feng, J., Qi, M., Jiang, J., Yan, S.: End-to-end comparative attention networks for person re-identification. IEEE Trans. Image Process. 26(7), 3492–3506 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C.: Performance measures and a data set for multi-target, multi-camera tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 17–35. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48881-3_2CrossRefGoogle Scholar
  17. 17.
    Si, J., et al.: Dual attention matching network for context-aware feature sequence based person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5363–5372 (2018)Google Scholar
  18. 18.
    Sun, Y., Zheng, L., Deng, W., Wang, S.: SVDNet for pedestrian retrieval. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3800–3808 (2017)Google Scholar
  19. 19.
    Sun, Y., Zheng, L., Yang, Y., Tian, Q., Wang, S.: Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline). In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 501–518. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01225-0_30CrossRefGoogle Scholar
  20. 20.
    Varior, R.R., Haloi, M., Wang, G.: Gated siamese convolutional neural network architecture for human re-identification. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 791–808. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46484-8_48CrossRefGoogle Scholar
  21. 21.
    Wang, C., Zhang, Q., Huang, C., Liu, W., Wang, X.: Mancs: a multi-task attentional network with curriculum sampling for person re-identification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 384–400. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01225-0_23CrossRefGoogle Scholar
  22. 22.
    Wang, G., Yuan, Y., Chen, X., Li, J., Zhou, X.: Learning discriminative features with multiple granularities for person re-identification. In: 2018 ACM Multimedia Conference on Multimedia Conference, pp. 274–282. ACM (2018)Google Scholar
  23. 23.
    Wei, L., Zhang, S., Gao, W., Tian, Q.: Person transfer gan to bridge domain gap for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 79–88 (2018)Google Scholar
  24. 24.
    Wei, L., Zhang, S., Yao, H., Gao, W., Tian, Q.: Glad: global-local-alignment descriptor for pedestrian retrieval. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 420–428. ACM (2017)Google Scholar
  25. 25.
    Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46478-7_31CrossRefGoogle Scholar
  26. 26.
    Zhang, X., et al.: Alignedreid: surpassing human-level performance in person re-identification. arXiv preprint arXiv:1711.08184 (2017)
  27. 27.
    Zhao, L., Li, X., Zhuang, Y., Wang, J.: Deeply-learned part-aligned representations for person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3219–3228 (2017)Google Scholar
  28. 28.
    Zheng, L., Huang, Y., Lu, H., Yang, Y.: Pose invariant embedding for deep person re-identification. IEEE Trans. Image Process. (2019) Google Scholar
  29. 29.
    Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification: a benchmark. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1116–1124 (2015)Google Scholar
  30. 30.
    Zheng, L., Yang, Y., Hauptmann, A.G.: Person re-identification: past, present and future. arXiv preprint arXiv:1610.02984 (2016)
  31. 31.
    Zheng, Z., Zheng, L., Yang, Y.: Unlabeled samples generated by gan improve the person re-identification baseline in vitro. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3754–3762 (2017)Google Scholar
  32. 32.
    Zhong, Z., Zheng, L., Cao, D., Li, S.: Re-ranking person re-identification with k-reciprocal encoding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1318–1327 (2017)Google Scholar
  33. 33.
    Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. arXiv preprint arXiv:1708.04896 (2017)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Key Laboratory of Electromagnetic Space Information, Chinese Academy of SciencesSchool of Information Science and Technology, University of Science and Technology of ChinaHefeiChina

Personalised recommendations