An Industrial Defect Detection Platform Based on Rapid Iteration

  • Jianchao ZhuEmail author
  • Dong Cheng
  • Qingjie Kong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11903)


With the improvement of the precision of industrial cameras and the popularity of applications, the visual inspection model method of deep learning is more and more widely used in the field of industrial inspection. According to the analysis of the basic needs of the current industrial inspection field, we found that many need to carry out rapid detection and iteration of small data sets. We propose a platform model that is more in line with current industrial inspection production. And the model is based on many convolutional neural network architectures, including spatial transformer network, Faster-RCNN, YOLO, etc.


Industrial detection Deep learning Rapid iteration 


  1. 1.
    Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22(4), 469–483 (1996)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bartz, C., Yang, H., Meinel, C.: STN-OCR: a single neural network for text detection and text recognition (2017)Google Scholar
  3. 3.
    Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The Pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010)CrossRefGoogle Scholar
  4. 4.
    Girshick, R.B.: Fast R-CNN. CoRR (2015)Google Scholar
  5. 5.
    Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation (2013)Google Scholar
  6. 6.
    Goodfellow, I.J., et al.: Generative adversarial nets. In: International Conference on Neural Information Processing Systems (2014)Google Scholar
  7. 7.
    Har-Peled S, M.S.: Fast algorithms for computing the smallest k -enclosing circle (2005)Google Scholar
  8. 8.
    He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN (2017)Google Scholar
  9. 9.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR (2015)Google Scholar
  10. 10.
    Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks. CoRR (2016)Google Scholar
  11. 11.
    Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks (2015)Google Scholar
  12. 12.
    Krizhevsky, A.: Learning multiple layers of features from tiny images (2009)Google Scholar
  13. 13.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: International Conference on Neural Information Processing Systems (2012)Google Scholar
  14. 14.
    Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition (2009)Google Scholar
  15. 15.
    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. In: Proceedings of the IEEE (1998)Google Scholar
  16. 16.
    Li, C., Liu, Q., Dong, W., Zhu, X., Liu, J., Lu, H.: Human age estimation based on locality and ordinal information. IEEE Trans. Cybern. 45(11), 2522–2534 (2017)CrossRefGoogle Scholar
  17. 17.
    Li, C., Fan, W., Yan, J., Dong, W., Liu, Q., Zha, H.: Self-paced multi-task learning (2016)Google Scholar
  18. 18.
    Li, C., Wang, X., Dong, W., Yan, J., Liu, Q., Zha, H.: Joint active learning with feature selection via cur matrix decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 41(99), 1382–1396 (2018) Google Scholar
  19. 19.
    Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). Scholar
  20. 20.
    Ohtsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (2007)CrossRefGoogle Scholar
  21. 21.
    Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: unified, real-time object detection (2015)Google Scholar
  22. 22.
    Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. arXiv preprint arXiv:1612.08242 (2016)
  23. 23.
    Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv (2018)Google Scholar
  24. 24.
    Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks (2015)Google Scholar
  25. 25.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Computer Science (2014)Google Scholar
  26. 26.
    Yang, X., Deng, C., Zheng, F., Yan, J., Liu, W.: Deep spectral clustering using dual autoencoder network (2019)Google Scholar
  27. 27.
    Yang, S., Lin, W., Yan, J., Xu, M., Wu, J., Wang, J.: Person re-identification with correspondence structure learning (2015)Google Scholar
  28. 28.
    Zhang, X.Y., Wang, S., Yun, X.: Bidirectional active learning: a two-way exploration into unlabeled and labeled data set. IEEE Trans. Neural Networks Learn. Syst. 26(12), 3034–3044 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Zhang, X.Y., Shi, H., Li, C., Zheng, K., Duan, L.: Learning transferable self-attentive representations for action recognition in untrimmed videos with weak supervision (2019)CrossRefGoogle Scholar
  30. 30.
    Zhang, X.Y., Shi, H., Zhu, X., Li, P.: Active semi-supervised learning based on self-expressive correlation with generative adversarial networks. Neurocomputing 345 (2019). Scholar
  31. 31.
    Zhang, X.Y., Wang, S.P., Zhu, X.B., Wu, G.J., Wang, Y.P.: Update vs. upgrade: modeling with indeterminate multi-class active learning. Neurocomputing 162, 163–170 (2015)CrossRefGoogle Scholar
  32. 32.
    Zhang, X.Y.: Interactive patent classification based on multi-classifier fusion and active learning. Neurocomputing 127, 200–205 (2014)CrossRefGoogle Scholar
  33. 33.
    Zhu, X., Zhang, X., Zhang, X.Y., Xue, Z., Wang, L.: A novel framework for semantic segmentation with generative adversarial network. J. Vis. Commun. Image Represent. 58 (2018). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.East China Normal UniversityShanghaiChina
  2. 2.Riseye Intelligent Technology Co., Ltd.ShenzhenChina

Personalised recommendations