Advertisement

Realistic Modeling of Tree Ramifications from an Optimal Manifold Control Mesh

  • Zhengyu Huang
  • Zhiyi Zhang
  • Nan Geng
  • Long Yang
  • Dongjian He
  • Shaojun HuEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11902)

Abstract

Modeling realistic branches and ramifications of trees is a challenging task because of their complex geometric structures. Many approaches have been proposed to generate plausible tree models from images, sketches, point clouds, and botanical rules. However, most approaches focus on a global impression of trees, such as the topological structure of branches and arrangement of leaves, without taking continuity of branch ramifications into consideration. To model a complete tree quadrilateral mesh (quad-mesh) with smooth ramifications, we propose an optimization method to calculate a suitable control mesh for Catmull–Clark subdivision. Given a tree’s skeleton information, we build a local coordinate system for each joint node, and orient each node appropriately based on the angle between a parent branch and its child branch. Then, we create the corresponding basic ramification units using a cuboid-like quad-mesh, which is mapped back to the world coordinate. To obtain a suitable manifold initial control mesh as a main mesh, the ramifications are classified into main and additional ramifications, and a bottom-up optimization approach is applied to adjust the positions of the main ramification units when they connect their neighbors. Next, the first round of Catmull–Clark subdivision is applied to the main ramifications. The additional ramifications, which were selected to alleviate visual distortion in the preceding step, are added back to the main mesh using a cut-paste operation. Finally, the second round of Catmull–Clark subdivision is used to generate the final quad-mesh of the entire tree. The results demonstrated that our method generated a realistic tree quad-mesh effectively from different tree skeletons.

Keywords

Tree quad-mesh Construction optimization Catmull–Clark subdivision Manifold tree modeling 

Notes

Acknowledgements

We thank the ICIG2019 reviewers for their thoughtful comments. The work is supported by the NSFC (61303124), NSBR Plan of Shaanxi (2019JM-370), Key Research and Development Program of Shaanxi (2018NY-127) and the Fundamental Research Funds for the Central Universities (2452017343).

References

  1. 1.
    Alexe, A., Barthe, L., Cani, M., Gaildrat, V.: Shape modeling by sketching using convolution surfaces. In: Pacific Graphics (Short Papers), p. 39 (2007)Google Scholar
  2. 2.
    Angles, B., Tarini, M., Wyvill, B., Barthe, L., Tagliasacchi, A.: Sketch-based implicit blending. ACM Trans. Graph. 36(6), 181:1–181:13 (2017)CrossRefGoogle Scholar
  3. 3.
    Bloomenthal, J.: Skeletal design of natural forms. Computer Science University of Calgary (1995)Google Scholar
  4. 4.
    Bloomenthal, J., Shoemake, K.: Convolution surfaces. In: SIGGRAPH 1991, Providence, RI, USA, 27–30 April 1991, pp. 251–256 (1991)Google Scholar
  5. 5.
    Felkel, P., Wegenkittl, R., Buhler, K.: Surface models of tube trees. In: 2004 Computer Graphics International Conference (CGI 2004), Crete, Greece, pp. 70–77 (2004)Google Scholar
  6. 6.
    Galbraith, C., Mündermann, L., Wyvill, B.: Implicit visualization and inverse modeling of growing trees. Comput. Graph. Forum 23(3), 351–360 (2004)CrossRefGoogle Scholar
  7. 7.
    Habel, R., Kusternig, A., Wimmer, M.: Physically guided animation of trees. Comput. Graph. Forum 28(2), 523–532 (2009)CrossRefGoogle Scholar
  8. 8.
    Hu, S., Chiba, N., He, D.: Realistic animation of interactive trees. Vis. Comput. 28(6–8), 859–868 (2012)CrossRefGoogle Scholar
  9. 9.
    Hu, S., Li, Z., Zhang, Z., He, D., Wimmer, M.: Efficient tree modeling from airborne lidar point clouds. Comput. Graph. 67, 1–13 (2017)CrossRefGoogle Scholar
  10. 10.
    Hu, S., Zhang, Z., Xie, H., Igarashi, T.: Data-driven modeling and animation of outdoor trees through interactive approach. Vis. Comput. 33(6), 1017–1027 (2017)CrossRefGoogle Scholar
  11. 11.
    Kazhdan, M., Hoppe, H.: Screened poisson surface reconstruction. ACM Trans. Graph. 32(3), 1–13 (2013)zbMATHCrossRefGoogle Scholar
  12. 12.
    Kazhdan, M.M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, Cagliari, Sardinia, Italy, 26–28 June 2006, pp. 61–70 (2006)Google Scholar
  13. 13.
    Li, C., Deussen, O., Song, Y.Z., Willis, P., Hall, P.: Modeling and generating moving trees from video. ACM Trans. Graph. 30(6), 127 (2011)CrossRefGoogle Scholar
  14. 14.
    Livny, Y., et al.: Texture-lobes for tree modelling. ACM Trans. Graph. 30(4), 53:1–53:10 (2011)CrossRefGoogle Scholar
  15. 15.
    Livny, Y., Yan, F., Olson, M., Chen, B., Zhang, H., El-Sana, J.: Automatic reconstruction of tree skeletal structures from point clouds. ACM Trans. Graph. 29(6), 151:1–151:8 (2010)CrossRefGoogle Scholar
  16. 16.
    Möller, T., Trumbore, B.: Fast, minimum storage ray/triangle intersection, pp. 21–28 (1997)Google Scholar
  17. 17.
    Okabe, M., Owada, S., Igarashi, T.: Interactive design of botanical trees using freehand sketches and example-based editing. Comput. Graph. Forum 24(3), 487–496 (2005)CrossRefGoogle Scholar
  18. 18.
    Palubicki, W., Horel, K., Longay, S., Runions, A., Lane, B.: Self-organizing tree models for image synthesis. ACM Trans. Graph. 28(3), 1–10 (2009)CrossRefGoogle Scholar
  19. 19.
    Pirk, S., Niese, T., Deussen, O., Neubert, B.: Capturing and animating the morphogenesis of polygonal tree models. ACM Trans. Graph. 31(6), 169:1–169:10 (2012)CrossRefGoogle Scholar
  20. 20.
    Pirk, S., Niese, T., Hädrich, T., Benes, B., Deussen, O.: Windy trees: computing stress response for developmental tree models. ACM Trans. Graph. 33(6), 1–11 (2014)CrossRefGoogle Scholar
  21. 21.
    Pirk, S., et al.: Plastic trees: interactive self-adapting botanical tree models. ACM Trans. Graph. 31(4), 50:1–50:10 (2012)CrossRefGoogle Scholar
  22. 22.
    Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants (1990)Google Scholar
  23. 23.
    Runions, A., Lane, B., Prusinkiewicz, P.: Modeling trees with a space colonization algorithm. In: Proceedings of the Third Eurographics Conference on Natural Phenomena, NPH 2007, Eurographics Association, Aire-la-Ville, Switzerland, pp. 63–70 (2007)Google Scholar
  24. 24.
    Stava, O., et al.: Inverse procedural modelling of trees. Comput. Graph. Forum 33(6), 118–131 (2014)CrossRefGoogle Scholar
  25. 25.
    Tai, C., Zhang, H., Fong, J.C.: Prototype modeling from sketched silhouettes based on convolution surfaces. Comput. Graph. Forum 23(1), 71–84 (2004)CrossRefGoogle Scholar
  26. 26.
    Tan, P., Zeng, G., Wang, J., Kang, S.B., Quan, L.: Image-based tree modeling. ACM Trans. Graph. 26(3), 87 (2007)CrossRefGoogle Scholar
  27. 27.
    Tobler, R.F., Maierhofer, S., Wilkie, A.: Mesh-based parametrized l-systems and generalized subdivision for generating complex geometry. Int. J. Shape Model. 8(2), 173–191 (2002)zbMATHCrossRefGoogle Scholar
  28. 28.
    Wang, Y., Xue, X., Jin, X., Deng, Z.: Creative virtual tree modeling through hierarchical topology-preserving blending. IEEE Trans. Vis. Comput. Graph. 1(99), 2521–2534 (2017)CrossRefGoogle Scholar
  29. 29.
    Wu, X., Luboz, V., Krissian, K., Cotin, S., Dawson, S.: Segmentation and reconstruction of vascular structures for 3D real-time simulation. Med. Image Anal. 15(1), 22–34 (2011)CrossRefGoogle Scholar
  30. 30.
    Wyvill, B., Guy, A., Galin, E.: Extending the CSG tree - warping, blending and boolean operations in an implicit surface modeling system. Comput. Graph. Forum 18(2), 149–158 (1999)CrossRefGoogle Scholar
  31. 31.
    Zhu, X., Jin, X., You, L.: High-quality tree structures modelling using local convolution surface approximation. Vis. Comput. 31(1), 69–82 (2015)CrossRefGoogle Scholar
  32. 32.
    Zhu, X., Jin, X., Liu, S., Zhao, H.: Analytical solutions for sketch-based convolution surface modeling on the GPU. Vis. Comput. 28(11), 1115–1125 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Zhengyu Huang
    • 1
  • Zhiyi Zhang
    • 1
  • Nan Geng
    • 1
  • Long Yang
    • 1
  • Dongjian He
    • 2
  • Shaojun Hu
    • 1
    Email author
  1. 1.College of Information EngineeringNorthwest A&F UniversityYanglingChina
  2. 2.College of Mechanical and Electronic EngineeringNorthwest A&F UniversityYanglingChina

Personalised recommendations