Control of Cooperative Unmanned Aerial Vehicles: Review of Applications, Challenges, and Algorithms

  • Arman SargolzaeiEmail author
  • Alireza Abbaspour
  • Carl D. Crane
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1123)


A system of cooperative unmanned aerial vehicles (UAVs) is a group of agents interacting with each other and the surrounding environment to achieve a specific task. In contrast with a single UAV, UAV swarms are expected to benefit efficiency, flexibility, accuracy, robustness, and reliability. However, the provision of external communications potentially exposes them to an additional layer of faults, failures, uncertainties, and cyberattacks and can contribute to the propagation of error from one component to other components in a network. Also, other challenges such as complex nonlinear dynamic of UAVs, collision avoidance, velocity matching, and cohesion should be addressed adequately. Main applications of cooperative UAVs are border patrol; search and rescue; surveillance; mapping; military. Challenges to be addressed in decision and control in cooperative systems may include the complex nonlinear dynamic of UAVs, collision avoidance, velocity matching, and cohesion. In this paper, emerging topics in the field of cooperative UAVs control and their associated practical approaches are reviewed.


Cooperative unmanned aerial vehicles Nonlinear dynamics UAV swarm 



The authors would like to thank Dr. Kang Yen for his guidance, contribution, and effort toward this paper.


  1. 1.
    L. Lin, M. Roscheck, M.A. Goodrich, B.S. Morse, Supporting wilderness search and rescue with integrated intelligence: autonomy and information at the right time and the right place. in Association for the Advancement of Artificial Intelligence (2010)Google Scholar
  2. 2.
    J.R. Riehl, G.E. Collins, J.P. Hespanha, Cooperative search by UAV teams: a model predictive approach using dynamic graphs. IEEE Trans. Aerosp. Electron. Syst. 47(4), 2637–2656 (2011)CrossRefGoogle Scholar
  3. 3.
    J. How, Y. Kuwata, E. King, Flight demonstrations of cooperative control for UAV teams, in AIAA 3rd “Unmanned Unlimited” Technical Conference, Workshop and Exhibit (2004), p. 6490Google Scholar
  4. 4.
    S.-M. Hung, S.N. Givigi, A q-learning approach to flocking with UAVS in a stochastic environment. IEEE Trans. Cybern. 47(1), 186–197 (2017)CrossRefGoogle Scholar
  5. 5.
    R.R. McCune, G.R. Madey, Control of artificial swarms with DDDAS. Proc. Comput. Sci. 29, 1171–1181 (2014)CrossRefGoogle Scholar
  6. 6.
    W. Ren, R.W. Beard, E.M. Atkins, Information consensus in multivehicle cooperative control. IEEE Control Syst. 27(2), 71–82 (2007)CrossRefGoogle Scholar
  7. 7.
    B.D. Anderson, C. Yu, J.M. Hendrickx, et al., Rigid graph control architectures for autonomous formations. IEEE Control Syst. 28(6), 48–63 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Q. Wang, H. Gao, F. Alsaadi, T. Hayat, An overview of consensus problems in constrained multi-agent coordination. Syst. Sci. Control Eng. Open Access J. 2(1), 275–284 (2014)CrossRefGoogle Scholar
  9. 9.
    K.-K. Oh, M.-C. Park, H.-S. Ahn, A survey of multi-agent formation control. Automatica 53, 424–440 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    B. Zhu, L. Xie, D. Han, X. Meng, R. Teo, A survey on recent progress in control of swarm systems. Sci. China Inf. Sci. 60(7), 070201 (2017)Google Scholar
  11. 11.
    M. Senanayake, I. Senthooran, J.C. Barca, H. Chung, J. Kamruzzaman, M. Murshed, Search and tracking algorithms for swarms of robots: a survey. Robot. Auton. Syst. 75, 422–434 (2016)CrossRefGoogle Scholar
  12. 12.
    M.A. Goodrich, J.L. Cooper, J.A. Adams, C. Humphrey, R. Zeeman, B.G. Buss, Using a mini-UAV to support wilderness search and rescue: practices for human-robot teaming, in IEEE International Workshop on Safety, Security and Rescue Robotics, 2007. SSRR 2007 (IEEE, Piscataway, 2007), pp. 1–6Google Scholar
  13. 13.
    J.Q. Cui, S.K. Phang, K.Z. Ang, F. Wang, X. Dong, Y. Ke, S. Lai, K. Li, X. Li, F. Lin, et al., Drones for cooperative search and rescue in post-disaster situation, in IEEE 7th International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), 2015 (IEEE, Piscataway, 2015), pp. 167–174Google Scholar
  14. 14.
    N. Nigam, I. Kroo, Control and design of multiple unmanned air vehicles for a persistent surveillance task, in 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (2008), p. 5913Google Scholar
  15. 15.
    N. Nigam, S. Bieniawski, I. Kroo, J. Vian, Control of multiple UAVS for persistent surveillance: algorithm and flight test results. IEEE Trans. Control Syst. Technol. 20(5), 1236–1251 (2012)CrossRefGoogle Scholar
  16. 16.
    A. Ahmadzadeh, A. Jadbabaie, V. Kumar, G.J. Pappas, Multi-UAV cooperative surveillance with spatio-temporal specifications, in 45th IEEE Conference on Decision and Control, 2006 (IEEE, Piscataway, 2006), pp. 5293–5298Google Scholar
  17. 17.
    J.W. Fenwick, P.M. Newman, J.J. Leonard, Cooperative concurrent mapping and localization, in IEEE International Conference on Robotics and Automation, 2002. Proceedings. ICRA’02, vol. 2 (IEEE, Piscataway, 2002), pp. 1810–1817Google Scholar
  18. 18.
    F. Remondino, L. Barazzetti, F. Nex, M. Scaioni, D. Sarazzi, UAV photogrammetry for mapping and 3d modeling–current status and future perspectives. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 38(1), C22 (2011)Google Scholar
  19. 19.
    Y. Lin, J. Hyyppa, A. Jaakkola, Mini-UAV-borne LIDAR for fine-scale mapping. IEEE Geosci. Remote Sens. Lett. 8(3), 426–430 (2011)CrossRefGoogle Scholar
  20. 20.
    L. Zongjian, UAV for mapping low altitude photogrammetric survey, in International Archives of Photogrammetry and Remote Sensing, Beijing, China, vol. 37 (2008), pp. 1183–1186Google Scholar
  21. 21.
    M.J. Mears, Cooperative electronic attack using unmanned air vehicles, in Proceedings of the 2005 American Control Conference, 2005 (IEEE, Piscataway, 2005), pp. 3339–3347CrossRefGoogle Scholar
  22. 22.
    Z. Junwei, Z. Jianjun, Target distributing of multi-UAVs cooperate attack and defend based on DPSO algorithm, in Sixth International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), 2014, vol. 2 (IEEE, Piscataway, 2014), pp. 396–400Google Scholar
  23. 23.
    D.A. Paley, F. Zhang, N.E. Leonard, Cooperative control for ocean sampling: the glider coordinated control system. IEEE Trans. Control Syst. Technol. 16(4), 735–744 (2008)CrossRefGoogle Scholar
  24. 24.
    J. Scherer, S. Yahyanejad, S. Hayat, E. Yanmaz, T. Andre, A. Khan, V. Vukadinovic, C. Bettstetter, H. Hellwagner, B. Rinner, An autonomous multi-UAV system for search and rescue, in Proceedings of the First Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use (ACM, New York, 2015), pp. 33–38Google Scholar
  25. 25.
    S. Waharte, N. Trigoni, Supporting search and rescue operations with UAVS, in International Conference on Emerging Security Technologies (EST), 2010 (IEEE, Piscataway, 2010), pp. 142–147Google Scholar
  26. 26.
    A. Viguria, I. Maza, A. Ollero, Distributed service-based cooperation in aerial/ground robot teams applied to fire detection and extinguishing missions. Adv. Robot. 24(1–2), 1–23 (2010)CrossRefGoogle Scholar
  27. 27.
    I. Maza, F. Caballero, J. Capitan, J. Martinez-de Dios, A. Ollero, Firemen monitoring with multiple UAVs for search and rescue missions, in IEEE International Workshop on Safety Security and Rescue Robotics (SSRR), 2010 (IEEE, Piscataway, 2010), pp. 1–6Google Scholar
  28. 28.
    R.W. Beard, T.W. McLain, D.B. Nelson, D. Kingston, D. Johanson, Decentralized cooperative aerial surveillance using fixed-wing miniature UAVS. Proc. IEEE 94(7), 1306–1324 (2006)CrossRefGoogle Scholar
  29. 29.
    N. Nigam, I. Kroo, Persistent surveillance using multiple unmanned air vehicles, in IEEE Aerospace Conference, 2008 (IEEE, Piscataway, 2008), pp. 1–14Google Scholar
  30. 30.
    D.A. Paley, C. Peterson, Stabilization of collective motion in a time-invariant flowfield. J. Guid. Control. Dyn. 32(3), 771–779 (2009)CrossRefGoogle Scholar
  31. 31.
    A.H. Goktogan, E. Nettleton, M. Ridley, S. Sukkarieh, Real time multi-UAV simulator, in IEEE International Conference on Robotics and Automation, 2003 Proceedings. ICRA’03, vol. 2 (IEEE, Piscataway, 2003), pp. 2720–2726Google Scholar
  32. 32.
    S.B. Williams, G. Dissanayake, H. Durrant-Whyte, Towards multi-vehicle simultaneous localisation and mapping, in IEEE International Conference on Robotics and Automation, 2002. Proceedings. ICRA’02, vol. 3 (IEEE, Piscataway, 2002), pp. 2743–2748Google Scholar
  33. 33.
    M. Bryson, S. Sukkarieh, Co-operative localisation and mapping for multiple UAVs in unknown environments, in IEEE Aerospace Conference, 2007 (IEEE, Piscataway, 2007), pp. 1–12Google Scholar
  34. 34.
    J. Han, Y. Xu, L. Di, Y. Chen, Low-cost multi-UAV technologies for contour mapping of nuclear radiation field. J. Intell. Robot. Syst. 70, 401–410 (2013)CrossRefGoogle Scholar
  35. 35.
    M.A. Kovacina, D. Palmer, G. Yang, R. Vaidyanathan, Multi-agent control algorithms for chemical cloud detection and mapping using unmanned air vehicles, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002, vol. 3, pp. 2782–2788 (IEEE, Piscataway, 2002)Google Scholar
  36. 36.
    I.-S. Jeon, J.-I. Lee, M.-J. Tahk, Homing guidance law for cooperative attack of multiple missiles. J. Guid. Control. Dyn. 33(1), 275–280 (2010)CrossRefGoogle Scholar
  37. 37.
    M. Sadeghi, A. Abaspour, S.H. Sadati, A novel integrated guidance and control system design in formation flight. J. Aerosp. Technol. Manag. 7(4), 432–442 (2015)CrossRefGoogle Scholar
  38. 38.
    E. Lavretsky, F/a-18 autonomous formation flight control system design, in AIAA Guidance, Navigation, and Control Conference and Exhibit (2002), p. 4757Google Scholar
  39. 39.
    L. Liu, D. McLernon, M. Ghogho, W. Hu, J. Huang, Ballistic missile detection via micro-Doppler frequency estimation from radar return. Digital Signal Process. 22(1), 87–95 (2012)MathSciNetCrossRefGoogle Scholar
  40. 40.
    M.L. Stone, G.P. Banner, Radars for the detection and tracking of ballistic missiles, satellites, and planets. Lincoln Lab. J. 12(2), 217–244 (2000)Google Scholar
  41. 41.
    C. Schwartz, T. Bryant, J. Cosgrove, G. Morse, J. Noonan, A radar for unmanned air vehicles. Lincoln Lab. J. 3(1), 119–143 (1990)Google Scholar
  42. 42.
    Y. Wang, S. Dong, L. Ou, L. Liu, Cooperative control of multi-missile systems. IET Control Theory Appl. 9(3), 441–446 (2014)MathSciNetCrossRefGoogle Scholar
  43. 43.
    A. Ahmadzadeh, G. Buchman, P. Cheng, A. Jadbabaie, J. Keller, V. Kumar, G. Pappas, Cooperative control of UAVS for search and coverage, in Proceedings of the AUVSI Conference on Unmanned Systems, vol. 2 (2006)Google Scholar
  44. 44.
    R.M. Murray, Recent research in cooperative control of multivehicle systems. J. Dyn. Syst. Meas. Control. 129(5), 571–583 (2007)CrossRefGoogle Scholar
  45. 45.
    J. Kim, J.P. Hespanha, Cooperative radar jamming for groups of unmanned air vehicles, in 43rd IEEE Conference on Decision and Control, 2004. CDC, vol. 1 (IEEE, Piscataway, 2004), pp. 632–637Google Scholar
  46. 46.
    J.-I. Lee, I.-S. Jeon, M.-J. Tahk, Guidance law using augmented trajectory-reshaping command for salvo attack of multiple missiles, in UKACC International Control Conference (2006), pp. 766–771Google Scholar
  47. 47.
    I.-S. Jeon, J.-I. Lee, M.-J. Tahk, Impact-time-control guidance law for anti-ship missiles. IEEE Trans. Control Syst. Technol. 14(2), 260–266 (2006)CrossRefGoogle Scholar
  48. 48.
    L. Gupta, R. Jain, G. Vaszkun, Survey of important issues in UAV communication networks. IEEE Commun. Surv. Tutorials 18(2), 1123–1152 (2016)CrossRefGoogle Scholar
  49. 49.
    A. Ryan, M. Zennaro, A. Howell, R. Sengupta, J.K. Hedrick, An overview of emerging results in cooperative UAV control, in 43rd IEEE Conference on Decision and Control, 2004. CDC, vol. 1 (IEEE, Piscataway, 2004), pp. 602–607Google Scholar
  50. 50.
    H. Oh, A.R. Shirazi, C. Sun, Y. Jin, Bio-inspired self-organising multi-robot pattern formation: a review. Robot. Auton. Syst. 91, 83–100 (2017)CrossRefGoogle Scholar
  51. 51.
    F.L. Lewis, H. Zhang, K. Hengster-Movric, A. Das, Cooperative Control of Multi-Agent Systems: Optimal and Adaptive Design Approaches (Springer, Berlin, 2013)zbMATHGoogle Scholar
  52. 52.
    S. Martini, D. Di Baccio, F.A. Romero, A.V. Jiménez, L. Pallottino, G. Dini, A. Ollero, Distributed motion misbehavior detection in teams of heterogeneous aerial robots. Robot. Auton. Syst. 74, 30–39 (2015)CrossRefGoogle Scholar
  53. 53.
    B. Khaldi, F. Harrou, F. Cherif, Y. Sun, Monitoring a robot swarm using a data-driven fault detection approach. Robot. Auton. Syst. 97, 193–203 (2017)CrossRefGoogle Scholar
  54. 54.
    A. Abbaspour, M. Sanchez, A. Sargolzaei, K. Yen, N. Sornkhampan, Adaptive neural network based fault detection design for unmanned quadrotor under faults and cyber attacks, in 25th International Conference on Systems Engineering (ICSEng) (2017)Google Scholar
  55. 55.
    A. Abbaspour, K.K. Yen, S. Noei, A. Sargolzaei, Detection of fault data injection attack on UAV using adaptive neural network. Proc. Comput. Sci. 95, 193–200 (2016)CrossRefGoogle Scholar
  56. 56.
    A. Sargolzaei, K.K. Yen, M.N. Abdelghani, Preventing time-delay switch attack on load frequency control in distributed power systems. IEEE Trans. Smart Grid 7(2), 1176–1185 (2015)Google Scholar
  57. 57.
    A. Sargolzaei, K. Yen, M.N. Abdelghani, Delayed inputs attack on load frequency control in smart grid, in Innovative Smart Grid Technologies 2014 (IEEE, Piscataway, 2014), pp. 1–5Google Scholar
  58. 58.
    A. Sargolzaei, K.K. Yen, M.N. Abdelghani, S. Sargolzaei, B. Carbunar, Resilient design of networked control systems under time delay switch attacks, application in smart grid. IEEE Access 5, 15,901–15,912 (2017)CrossRefGoogle Scholar
  59. 59.
    A. Sargolzaei, A. Abbaspour, M.A. Al Faruque, A.S. Eddin, K. Yen, Security challenges of networked control systems, in Sustainable Interdependent Networks (Springer, Berlin, 2018), pp. 77–95CrossRefGoogle Scholar
  60. 60.
    F. Giulietti, M. Innocenti, M. Napolitano, L. Pollini, Dynamic and control issues of formation flight. Aerosp. Sci. Technol. 9(1), 65–71 (2005)zbMATHCrossRefGoogle Scholar
  61. 61.
    R.L. Pereira, K.H. Kienitz, Tight formation flight control based on h approach, in 24th Mediterranean Conference on Control and Automation (MED), 2016 (IEEE, Piscataway, 2016), pp. 268–274Google Scholar
  62. 62.
    R.J. Ray, B.R. Cobleigh, M.J. Vachon, C. St. John, Flight test techniques used to evaluate performance benefits during formation flight, in NASA Conference Publication, NASA (1998, 2002)Google Scholar
  63. 63.
    J. Pahle, D. Berger, M.W. Venti, J.J. Faber, C. Duggan, K. Cardinal, A preliminary flight investigation of formation flight for drag reduction on the c-17 aircraft (2012)Google Scholar
  64. 64.
    A. Abbaspour, K.K. Yen, P. Forouzannezhad, A. Sargolzaei, A neural adaptive approach for active fault-tolerant control design in UAV. IEEE Trans. Syst. Man Cybern. Syst. Hum. 99, 1–11 (2018)Google Scholar
  65. 65.
    A. Abbaspour, P. Aboutalebi, K.K. Yen, A. Sargolzaei, Neural adaptive observer-based sensor and actuator fault detection in nonlinear systems: application in UAV. ISA Trans. 67, 317–329 (2017)CrossRefGoogle Scholar
  66. 66.
    V. Borkar, P. Varaiya, Asymptotic agreement in distributed estimation. IEEE Trans. Autom. Control 27(3), 650–655 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    J. Tsitsiklis, D. Bertsekas, M. Athans, Distributed asynchronous deterministic and stochastic gradient optimization algorithms. IEEE Trans. Autom. Control 31(9), 803–812 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    A. Jadbabaie, J. Lin, A.S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    R. Olfati-Saber, R.M. Murray, Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226 (1995)MathSciNetCrossRefGoogle Scholar
  71. 71.
    G. Xie, L. Wang, Consensus control for a class of networks of dynamic agents. Int. J. Robust Nonlinear Control 17(10–11), 941–959 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    F. Xiao, L. Wang, Asynchronous consensus in continuous-time multi-agent systems with switching topology and time-varying delays. IEEE Trans. Autom. Control 53(8), 1804–1816 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    X. Chen, F. Hao, Event-triggered average consensus control for discrete-time multi-agent systems. IET Control Theory Appl. 6(16), 2493–2498 (2012)MathSciNetCrossRefGoogle Scholar
  74. 74.
    H. Zhang, H. Jiang, Y. Luo, G. Xiao, Data-driven optimal consensus control for discrete-time multi-agent systems with unknown dynamics using reinforcement learning method. IEEE Trans. Ind. Electr. 64(5), 4091–4100 (2017)CrossRefGoogle Scholar
  75. 75.
    D. Ding, Z. Wang, B. Shen, G. Wei, Event-triggered consensus control for discrete-time stochastic multi-agent systems: the input-to-state stability in probability. Automatica 62, 284–291 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    J. Jin, N. Gans, Collision-free formation and heading consensus of nonholonomic robots as a pose regulation problem. Robot. Auton. Syst. 95, 25–36 (2017)CrossRefGoogle Scholar
  77. 77.
    M. Jamshidi, A.J. Betancourt, J. Gomez, Cyber-physical control of unmanned aerial vehicles. Sci. Iran. 18(3), 663–668 (2011)CrossRefGoogle Scholar
  78. 78.
    H. Rezaee, F. Abdollahi, Average consensus over high-order multiagent systems. IEEE Trans. Autom. Control 60(11), 3047–3052 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    W. Li, Unified generic geometric-decompositions for consensus or flocking systems of cooperative agents and fast recalculations of decomposed subsystems under topology-adjustments. IEEE Trans. Cybern. 46(6), 1463–1470 (2016)CrossRefGoogle Scholar
  80. 80.
    H. Liang, H. Zhang, Z. Wang, Distributed-observer-based cooperative control for synchronization of linear discrete-time multi-agent systems. ISA Trans. 59, 72–78 (2015)CrossRefGoogle Scholar
  81. 81.
    Y. Xia, X. Na, Z. Sun, J. Chen, Formation control and collision avoidance for multi-agent systems based on position estimation. ISA Trans. 61, 287–296 (2016)CrossRefGoogle Scholar
  82. 82.
    T. Han, Z.-H. Guan, M. Chi, B. Hu, T. Li, X.-H. Zhang, Multi-formation control of nonlinear leader-following multi-agent systems. ISA Trans. 69, 140–147 (2017)CrossRefGoogle Scholar
  83. 83.
    G.-S. Han, Z.-H. Guan, X.-M. Cheng, Y. Wu, F. Liu, Multiconsensus of second order multiagent systems with directed topologies. Int. J. Control, Autom. Syst. 11(6), 1122–1127 (2013)CrossRefGoogle Scholar
  84. 84.
    S. Shoja, M. Baradarannia, F. Hashemzadeh, M. Badamchizadeh, P. Bagheri, Surrounding control of nonlinear multi-agent systems with non-identical agents. ISA Trans. 70, 219 (2017)CrossRefGoogle Scholar
  85. 85.
    H. Hou, Q. Zhang, Finite-time synchronization for second-order nonlinear multi-agent system via pinning exponent sliding mode control. ISA Trans. 65, 96–108 (2016)CrossRefGoogle Scholar
  86. 86.
    M. Taheri, F. Sheikholeslam, M. Najafi, M. Zekri, Adaptive fuzzy wavelet network control of second order multi-agent systems with unknown nonlinear dynamics. ISA Trans. 69, 89–101 (2017)CrossRefGoogle Scholar
  87. 87.
    H. Zhang, F.L. Lewis, Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics. Automatica 48(7), 1432–1439 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  88. 88.
    S. El-Ferik, A. Qureshi, F.L. Lewis, Neuro-adaptive cooperative tracking control of unknown higher-order affine nonlinear systems. Automatica 50(3), 798–808 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    Z. Gallehdari, N. Meskin, K. Khorasani, A distributed control reconfiguration and accommodation for consensus achievement of multiagent systems subject to actuator faults. IEEE Trans. Control Syst. Technol. 24(6), 2031–2047 (2016)CrossRefGoogle Scholar
  90. 90.
    Z. Gallehdari, N. Meskin, K. Khorasani, Distributed reconfigurable control strategies for switching topology networked multi-agent systems. ISA Trans. 71, 51–67 (2017)zbMATHCrossRefGoogle Scholar
  91. 91.
    Y. Hua, X. Dong, Q. Li, Z. Ren, Distributed fault-tolerant time-varying formation control for high-order linear multi-agent systems with actuator failures. ISA Trans. 71, 40–50 (2017)CrossRefGoogle Scholar
  92. 92.
    R. Wang, X. Dong, Q. Li, Z. Ren, Distributed adaptive formation control for linear swarm systems with time-varying formation and switching topologies. IEEE Access 4, 8995–9004 (2016)CrossRefGoogle Scholar
  93. 93.
    W. Wang, C. Wen, J. Huang, Distributed adaptive asymptotically consensus tracking control of nonlinear multi-agent systems with unknown parameters and uncertain disturbances. Automatica 77, 133–142 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    C.W. Reynolds, Flocks, herds and schools: a distributed behavioral model. ACM SIGGRAPH Comput. Graph. 21(4), 25–34 (1987)CrossRefGoogle Scholar
  95. 95.
    N. Moshtagh, A. Jadbabaie, Distributed geodesic control laws for flocking of nonholonomic agents. IEEE Trans. Autom. Control 52(4), 681–686 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  96. 96.
    R. Olfati-Saber, Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control 51(3), 401–420 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    O. Saif, I. Fantoni, A. Zavala-Rio, Flocking of multiple unmanned aerial vehicles by LQR control, in International Conference on Unmanned Aircraft Systems (ICUAS), 2014 (IEEE, Piscataway, 2014), pp. 222–228CrossRefGoogle Scholar
  98. 98.
    S.H. Semnani, O.A. Basir, Semi-flocking algorithm for motion control of mobile sensors in large-scale surveillance systems. IEEE Trans. Cybern. 45(1), 129–137 (2015)CrossRefGoogle Scholar
  99. 99.
    A. Chapman, M. Mesbahi, UAV flocking with wind gusts: adaptive topology and model reduction, in American Control Conference (ACC), 2011 (IEEE, Piscataway, 2011), pp. 1045–1050Google Scholar
  100. 100.
    H.G. Tanner, A. Jadbabaie, G.J. Pappas, Flocking in fixed and switching networks. IEEE Trans. Autom. Control 52(5), 863–868 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    S.A. Quintero, G.E. Collins, J.P. Hespanha, Flocking with fixed-wing UAVS for distributed sensing: a stochastic optimal control approach, in American Control Conference (ACC), 2013 (IEEE, Piscataway, 2013), pp. 2025–2031Google Scholar
  102. 102.
    S. Martin, A. Girard, A. Fazeli, A. Jadbabaie, Multiagent flocking under general communication rule. IEEE Trans. Control Netw. Syst. 1(2), 155–166 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  103. 103.
    W. Naeem, R. Sutton, S. Ahmad, R. Burns, A review of guidance laws applicable to unmanned underwater vehicles. J. Navig. 56(1), 15–29 (2003)CrossRefGoogle Scholar
  104. 104.
    C.-F. Lin, Modern Navigation, Guidance, and Control Processing, vol. 2 (Prentice Hall, Englewood Cliffs, 1991)Google Scholar
  105. 105.
    N.A. Shneydor, Missile Guidance and Pursuit: Kinematics, Dynamics and Control (Elsevier, Amsterdam, 1998)CrossRefGoogle Scholar
  106. 106.
    T. Yamasaki, K. Enomoto, H. Takano, Y. Baba, S. Balakrishnan, Advanced pure pursuit guidance via sliding mode approach for chase UAV, in Proceedings of AIAA Guidance, Navigation and Control Conference, AIAA, vol. 6298 (2009), p. 2009Google Scholar
  107. 107.
    Y. Gu, B. Seanor, G. Campa, M.R. Napolitano, L. Rowe, S. Gururajan, S. Wan, Design and flight testing evaluation of formation control laws. IEEE Trans. Control Syst. Technol. 14(6), 1105–1112 (2006)CrossRefGoogle Scholar
  108. 108.
    S. Zhu, D. Wang, C.B. Low, Cooperative control of multiple UAVS for moving source seeking. J. Intell. Robot. Syst. 74(1–2), 333–346 (2014)CrossRefGoogle Scholar
  109. 109.
    S.U. Ali, R. Samar, M.Z. Shah, A.I. Bhatti, K. Munawar, U.M. Al-Sggaf, Lateral guidance and control of UAVs using second-order sliding modes. Aerosp. Sci. Technol. 49, 88–100 (2016)CrossRefGoogle Scholar
  110. 110.
    X. Wang, V. Yadav, S. Balakrishnan, Cooperative UAV formation flying with obstacle/collision avoidance. IEEE Trans. Control Syst. Technol. 15(4), 672–679 (2007)CrossRefGoogle Scholar
  111. 111.
    E. Børhaug, A. Pavlov, E. Panteley, K.Y. Pettersen, Straight line path following for formations of underactuated marine surface vessels. IEEE Trans. Control Syst. Technol. 19(3), 493–506 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Arman Sargolzaei
    • 1
    Email author
  • Alireza Abbaspour
    • 2
  • Carl D. Crane
    • 1
  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.Department of Advanced EngineeringHyundai MobisPlymouthUSA

Personalised recommendations