Advertisement

Segmentation Analysis Using Particle Swarm Optimization - Self Organizing Map Algorithm and Classification of Remote Sensing Data for Agriculture

  • Jagannath K. JadhavEmail author
  • Amruta P. Sonavale
  • R. P. Singh
Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 38)

Abstract

Remote sensing (RS) has become one of the vital approaches to get the information directly from the earth’s surface. In recent years, with the event of environmental informatics, RS information has contend a crucial role in several areas of analysis, like atmosphere science, ecology, soil pollution, etc. When monitoring, the multispectral satellite data problem are vital once. Therefore, in our analysis, automatic segmentation has aroused a growing interest of researchers over the past few years within the multispectral RS system. To beat existing shortcomings, we provide automatic semantic segmentation while not losing significant information. So, we use SOM for segmentation functions. Additionally, we’ve got planned a particle swarm improvement (PSO) algorithmic rule for directly sorting out cluster boundaries from SOM. The most objective of this work is to get a complete accuracy of over eighty fifth (OA> 85%). Deep Learning (DL) could be a powerful image process technique, together with RS image.

Keywords

Deep Learning Self organizing map Change detection Remote sensing Crop classification 

References

  1. 1.
    Lavreniuk, M.S., Skakun, S.V., Shelestov, A.J.: Large-scale classification of land cover using retrospective satellite data. Cybern. Syst. Anal. 52(1), 127–138 (2016)CrossRefGoogle Scholar
  2. 2.
    Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y.: Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(6), 2094–2107 (2014)CrossRefGoogle Scholar
  3. 3.
    Drusch, M., Bello, D., Colin, O., Fernandez, V.: Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 120, 25–36 (2012)CrossRefGoogle Scholar
  4. 4.
    Roy, D.P., Welder, M.A., Loveland, T.R.: Landsat-8: science and product vision for terrestrial global change research. Remote Sens. Environ. 145, 154–172 (2014)CrossRefGoogle Scholar
  5. 5.
    Stokes, G.M., Schwartz, S.E.: The atmospheric radiation measurement (ARM) program: programmatic background and design of the cloud and radiation test bed. Bull. Am. Meteor. Soc. 75(7), 1201–1222 (1994)CrossRefGoogle Scholar
  6. 6.
    Kussul, N., Lavreniuk, M., Skakun, S., Shelestov, A.: Deep learning classification of land cover and crop types using remote sensing data. IEEE Geosci. Remote Sens. Lett. 14(5), 778–782 (2017)CrossRefGoogle Scholar
  7. 7.
    Cheng, G., Zhou, P., Han, J.: Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Trans. Geosci. Remote Sens. 54(12), 7405–7415 (2016)CrossRefGoogle Scholar
  8. 8.
    Inglada, J.: Automatic recognition of man-made objects in high resolution optical remote sensing images by SVM classification of geometric image features. ISPRS J. photogram. Remote Sens. 62(3), 236–248 (2007)CrossRefGoogle Scholar
  9. 9.
    Mather, P.M., Koch, M.: Computer Processing of Remotely-Sensed Images: an Introduction. John Wiley and Sons, Hoboken (2011)CrossRefGoogle Scholar
  10. 10.
    Focareta, M., Marcuccio, S., Votto, C., Ullo, S. L.: Combination of Landsat 8 and Sentinel 1 data for the characterization of a site of interest. a case study: the royal palace of Caserta, October 2015Google Scholar
  11. 11.
    Grant, K., Siegmund, R., Wagner, M., Hartmann, S.: Satellite-based assessment of grassland yields. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. 40(7), 15 (2015)CrossRefGoogle Scholar
  12. 12.
    Whitehead, K., Hugenholtz, C.H.: Remote sensing of the environment with small unmanned aircraft systems (UASs), part 1: A review of progress and challenges. J. Unmanned Veh. Syst. 2(3), 69–85 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jagannath K. Jadhav
    • 1
    Email author
  • Amruta P. Sonavale
    • 2
  • R. P. Singh
    • 1
  1. 1.SSSUTMSSehoreIndia
  2. 2.VTU UniversityBelagaviIndia

Personalised recommendations