Advertisement

Metabolic Plasticity of Tumor Cells: How They Do Adapt to Food Deprivation

  • Céline A. Schoonjans
  • Bernard GallezEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1219)

Abstract

Dysregulated metabolism is a key hallmark of cancer cells and an enticing target for cancer treatment. Since the last 10 years, research on cancer metabolism has moved from pathway attention to network consideration. This metabolic complexity continuously adapt to new constraints in the tumor microenvironment. In this review, we will highlight striking changes in cancer cell metabolism compared to normal cells. Understanding this tumor metabolic plasticity suggests potential new targets and innovative combinatorial treatments for fighting cancer.

Keywords

Metabolic reprogramming Bioenergetics Glycolysis Mitochondria Amino acid Fatty acid Hypoxia Acidosis Combined therapies 

References

  1. Agarwal R, Kaye SB (2003) Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer 3(7):502–516.  https://doi.org/10.1038/nrc1123CrossRefPubMedGoogle Scholar
  2. Ahn CS, Metallo CM (2015) Mitochondria as biosynthetic factories for cancer proliferation. Cancer Metab 3(1):1.  https://doi.org/10.1186/s40170-015-0128-2CrossRefPubMedPubMedCentralGoogle Scholar
  3. Altman BJ, Stine ZE, Dang CV (2016) From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer 16(11):749.  https://doi.org/10.1038/nrc.2016.114CrossRefPubMedGoogle Scholar
  4. Amelio I, Cutruzzola F, Antonov A, Agostini M, Melino G (2014) Serine and glycine metabolism in cancer. Trends Biochem Sci 39(4):191–198.  https://doi.org/10.1016/j.tibs.2014.02.004CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bayer C, Vaupel P (2012) Acute versus chronic hypoxia in tumors: controversial data concerning time frames and biological consequences. Strahlenther Onkol 188(7):616–627.  https://doi.org/10.1007/s00066-012-0085-4CrossRefPubMedGoogle Scholar
  6. Bhutia YD, Babu E, Ramachandran S, Ganapathy V (2015) Amino acid transporters in cancer and their relevance to “glutamine addiction”: novel targets for the design of a new class of anticancer drugs. Cancer Res 75(9):1782–1788.  https://doi.org/10.1158/0008-5472.CAN-14-3745CrossRefPubMedGoogle Scholar
  7. Biancur DE, Paulo JA, Malachowska B, Quiles Del Rey M, Sousa CM, Wang X, Sohn ASW, Chu GC, Gygi SP, Harper JW, Fendler W, Mancias JD, Kimmelman AC (2017) Compensatory metabolic networks in pancreatic cancers upon perturbation of glutamine metabolism. Nat Commun 8:15965.  https://doi.org/10.1038/ncomms15965CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED (2007) A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11(1):37–51.  https://doi.org/10.1016/j.ccr.2006.10.020CrossRefPubMedGoogle Scholar
  9. Boroughs LK, DeBerardinis RJ (2015) Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol 17(4):351–359.  https://doi.org/10.1038/ncb3124CrossRefPubMedPubMedCentralGoogle Scholar
  10. Boudreau A, Purkey HE, Hitz A, Robarge K, Peterson D, Labadie S, Kwong M, Hong R, Gao M, Del Nagro C, Pusapati R, Ma S, Salphati L, Pang J, Zhou A, Lai T, Li Y, Chen Z, Wei B, Yen I, Sideris S, McCleland M, Firestein R, Corson L, Vanderbilt A, Williams S, Daemen A, Belvin M, Eigenbrot C, Jackson PK, Malek S, Hatzivassiliou G, Sampath D, Evangelista M, O’Brien T (2016) Metabolic plasticity underpins innate and acquired resistance to LDHA inhibition. Nat Chem Biol 12(10):779–786.  https://doi.org/10.1038/nchembio.2143CrossRefPubMedGoogle Scholar
  11. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95.  https://doi.org/10.1038/nrc2981CrossRefPubMedGoogle Scholar
  12. Chen JL, Lucas JE, Schroeder T, Mori S, Wu J, Nevins J, Dewhirst M, West M, Chi JT (2008) The genomic analysis of lactic acidosis and acidosis response in human cancers. PLoS Genet 4(12):e1000293.  https://doi.org/10.1371/journal.pgen.1000293CrossRefPubMedPubMedCentralGoogle Scholar
  13. Corbet C, Feron O (2017a) Cancer cell metabolism and mitochondria: nutrient plasticity for TCA cycle fueling. Biochim Biophys Acta Rev Cancer 1868(1):7–15.  https://doi.org/10.1016/j.bbcan.2017.01.002CrossRefPubMedGoogle Scholar
  14. Corbet C, Feron O (2017b) Tumour acidosis: from the passenger to the driver’s seat. Nat Rev Cancer 17(10):577–593.  https://doi.org/10.1038/nrc.2017.77CrossRefPubMedGoogle Scholar
  15. Corbet C, Draoui N, Polet F, Pinto A, Drozak X, Riant O, Feron O (2014) The SIRT1/HIF2alpha axis drives reductive glutamine metabolism under chronic acidosis and alters tumor response to therapy. Cancer Res 74(19):5507–5519.  https://doi.org/10.1158/0008-5472.CAN-14-0705CrossRefPubMedGoogle Scholar
  16. Corbet C, Pinto A, Martherus R, Santiago de Jesus JP, Polet F, Feron O (2016) Acidosis drives the reprogramming of fatty acid metabolism in cancer cells through changes in mitochondrial and histone acetylation. Cell Metab 24(2):311–323.  https://doi.org/10.1016/j.cmet.2016.07.003CrossRefPubMedGoogle Scholar
  17. De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cantelmo AR, Quaegebeur A, Ghesquiere B, Cauwenberghs S, Eelen G, Phng LK, Betz I, Tembuyser B, Brepoels K, Welti J, Geudens I, Segura I, Cruys B, Bifari F, Decimo I, Blanco R, Wyns S, Vangindertael J, Rocha S, Collins RT, Munck S, Daelemans D, Imamura H, Devlieger R, Rider M, Van Veldhoven PP, Schuit F, Bartrons R, Hofkens J, Fraisl P, Telang S, Deberardinis RJ, Schoonjans L, Vinckier S, Chesney J, Gerhardt H, Dewerchin M, Carmeliet P (2013) Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154(3):651–663.  https://doi.org/10.1016/j.cell.2013.06.037CrossRefPubMedGoogle Scholar
  18. De Preter G, Neveu MA, Danhier P, Brisson L, Payen VL, Porporato PE, Jordan BF, Sonveaux P, Gallez B (2016) Inhibition of the pentose phosphate pathway by dichloroacetate unravels a missing link between aerobic glycolysis and cancer cell proliferation. Oncotarget 7(3):2910–2920.  https://doi.org/10.18632/oncotarget.6272CrossRefPubMedGoogle Scholar
  19. DeBerardinis RJ, Chandel NS (2016) Fundamentals of cancer metabolism. Sci Adv 2(5):e1600200.  https://doi.org/10.1126/sciadv.1600200CrossRefPubMedPubMedCentralGoogle Scholar
  20. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A 104(49):19345–19350.  https://doi.org/10.1073/pnas.0709747104CrossRefPubMedPubMedCentralGoogle Scholar
  21. Eales KL, Hollinshead KE, Tennant DA (2016) Hypoxia and metabolic adaptation of cancer cells. Oncogene 5:e190.  https://doi.org/10.1038/oncsis.2015.50CrossRefGoogle Scholar
  22. Fan J, Kamphorst JJ, Mathew R, Chung MK, White E, Shlomi T, Rabinowitz JD (2013) Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol Syst Biol 9:712.  https://doi.org/10.1038/msb.2013.65CrossRefPubMedPubMedCentralGoogle Scholar
  23. Frezza C (2016) Cancer metabolism: addicted to serine. Nat Chem Biol 12(6):389–390.  https://doi.org/10.1038/nchembio.2086CrossRefPubMedGoogle Scholar
  24. Fuchs BC, Bode BP (2005) Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? Semin Cancer Biol 15(4):254–266.  https://doi.org/10.1016/j.semcancer.2005.04.005CrossRefPubMedGoogle Scholar
  25. Geck RC, Toker A (2016) Nonessential amino acid metabolism in breast cancer. Adv Biol Regul 62:11–17.  https://doi.org/10.1016/j.jbior.2016.01.001CrossRefPubMedGoogle Scholar
  26. Han CY, Patten DA, Richardson RB, Harper ME, Tsang BK (2018) Tumor metabolism regulating chemosensitivity in ovarian cancer. Genes Cancer 9(5–6):155–175.  https://doi.org/10.18632/genesandcancer.176CrossRefPubMedPubMedCentralGoogle Scholar
  27. Haugrud AB, Zhuang Y, Coppock JD, Miskimins WK (2014) Dichloroacetate enhances apoptotic cell death via oxidative damage and attenuates lactate production in metformin-treated breast cancer cells. Breast Cancer Res Treat 147(3):539–550.  https://doi.org/10.1007/s10549-014-3128-yCrossRefPubMedPubMedCentralGoogle Scholar
  28. Hosios AM, Hecht VC, Danai LV, Johnson MO, Rathmell JC, Steinhauser ML, Manalis SR, Vander Heiden MG (2016) Amino acids rather than glucose account for the majority of cell mass in proliferating mammalian cells. Dev Cell 36(5):540–549.  https://doi.org/10.1016/j.devcel.2016.02.012CrossRefPubMedPubMedCentralGoogle Scholar
  29. Imbert V, Nebout M, Mary D, Endou H, Wempe MF, Supuran CT, Winum JY, Peyron JF (2018) Co-targeting intracellular pH and essential amino acid uptake cooperates to induce cell death of T-ALL/LL cells. Leuk Lymphoma 59(2):460–468.  https://doi.org/10.1080/10428194.2017.1339875CrossRefPubMedGoogle Scholar
  30. Jones W, Bianchi K (2015) Aerobic glycolysis: beyond proliferation. Front Immunol 6:227.  https://doi.org/10.3389/fimmu.2015.00227CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kamphorst JJ, Cross JR, Fan J, de Stanchina E, Mathew R, White EP, Thompson CB, Rabinowitz JD (2013) Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc Natl Acad Sci U S A 110(22):8882–8887.  https://doi.org/10.1073/pnas.1307237110CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kamphorst JJ, Chung MK, Fan J, Rabinowitz JD (2014) Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate. Cancer Metab 2:23.  https://doi.org/10.1186/2049-3002-2-23CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kamphorst JJ, Nofal M, Commisso C, Hackett SR, Lu W, Grabocka E, Vander Heiden MG, Miller G, Drebin JA, Bar-Sagi D, Thompson CB, Rabinowitz JD (2015) Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res 75(3):544–553.  https://doi.org/10.1158/0008-5472.CAN-14-2211CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kankotia S, Stacpoole PW (2014) Dichloroacetate and cancer: new home for an orphan drug? Biochim Biophys Acta 1846(2):617–629.  https://doi.org/10.1016/j.bbcan.2014.08.005CrossRefPubMedGoogle Scholar
  35. Kim J, Guan KL (2019) mTOR as a central hub of nutrient signalling and cell growth. Nat Cell Biol 21(1):63–71.  https://doi.org/10.1038/s41556-018-0205-1CrossRefPubMedGoogle Scholar
  36. Kondo A, Yamamoto S, Nakaki R, Shimamura T, Hamakubo T, Sakai J, Kodama T, Yoshida T, Aburatani H, Osawa T (2017) Extracellular acidic pH activates the sterol regulatory element-binding protein 2 to promote tumor progression. Cell Rep 18(9):2228–2242.  https://doi.org/10.1016/j.celrep.2017.02.006CrossRefPubMedGoogle Scholar
  37. Kory N, Wyant GA, Prakash G, Uit de Bos J, Bottanelli F, Pacold ME, Chan SH, Lewis CA, Wang T, Keys HR, Guo YE, Sabatini DM (2018) SFXN1 is a mitochondrial serine transporter required for one-carbon metabolism. Science 362(6416):eaat9528.  https://doi.org/10.1126/science.aat9528CrossRefPubMedPubMedCentralGoogle Scholar
  38. Krall AS, Xu S, Graeber TG, Braas D, Christofk HR (2016) Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor. Nat Commun 7:11457.  https://doi.org/10.1038/ncomms11457CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kumar K, Wigfield S, Gee HE, Devlin CM, Singleton D, Li JL, Buffa F, Huffman M, Sinn AL, Silver J, Turley H, Leek R, Harris AL, Ivan M (2013) Dichloroacetate reverses the hypoxic adaptation to bevacizumab and enhances its antitumor effects in mouse xenografts. J Mol Med (Berl) 91(6):749–758.  https://doi.org/10.1007/s00109-013-0996-2CrossRefGoogle Scholar
  40. Lamonte G, Tang X, Chen JL, Wu J, Ding CK, Keenan MM, Sangokoya C, Kung HN, Ilkayeva O, Boros LG, Newgard CB, Chi JT (2013) Acidosis induces reprogramming of cellular metabolism to mitigate oxidative stress. Cancer Metab 1(1):23.  https://doi.org/10.1186/2049-3002-1-23CrossRefPubMedPubMedCentralGoogle Scholar
  41. Laurenti G, Tennant DA (2016) Isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH), fumarate hydratase (FH): three players for one phenotype in cancer? Biochem Soc Trans 44(4):1111–1116.  https://doi.org/10.1042/BST20160099CrossRefPubMedGoogle Scholar
  42. Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J, Tsukamoto T, Rojas CJ, Slusher BS, Zhang H, Zimmerman LJ, Liebler DC, Slebos RJ, Lorkiewicz PK, Higashi RM, Fan TW, Dang CV (2012) Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 15(1):110–121.  https://doi.org/10.1016/j.cmet.2011.12.009CrossRefPubMedPubMedCentralGoogle Scholar
  43. Li B, Li X, Ni Z, Zhang Y, Zeng Y, Yan X, Huang Y, He J, Lyu X, Wu Y, Wang Y, Zheng Y, He F (2016) Dichloroacetate and metformin synergistically suppress the growth of ovarian cancer cells. Oncotarget 7(37):59458–59470.  https://doi.org/10.18632/oncotarget.10694CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lu CW, Lin SC, Chen KF, Lai YY, Tsai SJ (2008) Induction of pyruvate dehydrogenase kinase-3 by hypoxia-inducible factor-1 promotes metabolic switch and drug resistance. J Biol Chem 283(42):28106–28114.  https://doi.org/10.1074/jbc.M803508200CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lukey MJ, Katt WP, Cerione RA (2017) Targeting amino acid metabolism for cancer therapy. Drug Discov Today 22(5):796–804.  https://doi.org/10.1016/j.drudis.2016.12.003CrossRefPubMedGoogle Scholar
  46. Lyssiotis CA, Kimmelman AC (2017) Metabolic interactions in the tumor microenvironment. Trends Cell Biol 27(11):863–875.  https://doi.org/10.1016/j.tcb.2017.06.003CrossRefPubMedPubMedCentralGoogle Scholar
  47. McGuirk S, Gravel SP, Deblois G, Papadopoli DJ, Faubert B, Wegner A, Hiller K, Avizonis D, Akavia UD, Jones RG, Giguere V, St-Pierre J (2013) PGC-1alpha supports glutamine metabolism in breast cancer. Cancer Metab 1(1):22.  https://doi.org/10.1186/2049-3002-1-22CrossRefPubMedPubMedCentralGoogle Scholar
  48. Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, Jewell CM, Johnson ZR, Irvine DJ, Guarente L, Kelleher JK, Vander Heiden MG, Iliopoulos O, Stephanopoulos G (2011) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481(7381):380–384.  https://doi.org/10.1038/nature10602CrossRefPubMedPubMedCentralGoogle Scholar
  49. Meyer KA, Neeley CK, Baker NA, Washabaugh AR, Flesher CG, Nelson BS, Frankel TL, Lumeng CN, Lyssiotis CA, Wynn ML, Rhim AD, O’Rourke RW (2016) Adipocytes promote pancreatic cancer cell proliferation via glutamine transfer. Biochem Biophys Rep 7:144–149.  https://doi.org/10.1016/j.bbrep.2016.06.004CrossRefPubMedPubMedCentralGoogle Scholar
  50. Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T, Yang Y, Linehan WM, Chandel NS, DeBerardinis RJ (2011) Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481(7381):385–388.  https://doi.org/10.1038/nature10642CrossRefPubMedPubMedCentralGoogle Scholar
  51. Nakazawa MS, Keith B, Simon MC (2016) Oxygen availability and metabolic adaptations. Nat Rev Cancer 16(10):663–673.  https://doi.org/10.1038/nrc.2016.84CrossRefPubMedPubMedCentralGoogle Scholar
  52. Obre E, Rossignol R (2015) Emerging concepts in bioenergetics and cancer research: metabolic flexibility, coupling, symbiosis, switch, oxidative tumors, metabolic remodeling, signaling and bioenergetic therapy. Int J Biochem Cell Biol 59:167–181.  https://doi.org/10.1016/j.biocel.2014.12.008CrossRefPubMedGoogle Scholar
  53. Palm W, Park Y, Wright K, Pavlova NN, Tuveson DA, Thompson CB (2015) The utilization of extracellular proteins as nutrients is suppressed by mTORC1. Cell 162(2):259–270.  https://doi.org/10.1016/j.cell.2015.06.017CrossRefPubMedPubMedCentralGoogle Scholar
  54. Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23(1):27–47.  https://doi.org/10.1016/j.cmet.2015.12.006CrossRefPubMedPubMedCentralGoogle Scholar
  55. Polet F, Corbet C, Pinto A, Rubio LI, Martherus R, Bol V, Drozak X, Gregoire V, Riant O, Feron O (2016) Reducing the serine availability complements the inhibition of the glutamine metabolism to block leukemia cell growth. Oncotarget 7(2):1765–1776.  https://doi.org/10.18632/oncotarget.6426CrossRefPubMedGoogle Scholar
  56. Pusapati RV, Daemen A, Wilson C, Sandoval W, Gao M, Haley B, Baudy AR, Hatzivassiliou G, Evangelista M, Settleman J (2016) mTORC1-dependent metabolic reprogramming underlies escape from glycolysis addiction in cancer cells. Cancer Cell 29(4):548–562.  https://doi.org/10.1016/j.ccell.2016.02.018CrossRefPubMedGoogle Scholar
  57. Rabanal-Ruiz Y, Otten EG, Korolchuk VI (2017) mTORC1 as the main gateway to autophagy. Essays Biochem 61(6):565–584.  https://doi.org/10.1042/EBC20170027CrossRefPubMedPubMedCentralGoogle Scholar
  58. San-Millan I, Brooks GA (2017) Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect. Carcinogenesis 38(2):119–133.  https://doi.org/10.1093/carcin/bgw127CrossRefPubMedGoogle Scholar
  59. Schug ZT, Peck B, Jones DT, Zhang Q, Grosskurth S, Alam IS, Goodwin LM, Smethurst E, Mason S, Blyth K, McGarry L, James D, Shanks E, Kalna G, Saunders RE, Jiang M, Howell M, Lassailly F, Thin MZ, Spencer-Dene B, Stamp G, van den Broek NJ, Mackay G, Bulusu V, Kamphorst JJ, Tardito S, Strachan D, Harris AL, Aboagye EO, Critchlow SE, Wakelam MJ, Schulze A, Gottlieb E (2015) Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell 27(1):57–71.  https://doi.org/10.1016/j.ccell.2014.12.002CrossRefPubMedPubMedCentralGoogle Scholar
  60. Senthebane DA, Rowe A, Thomford NE, Shipanga H, Munro D, Mazeedi M, Almazyadi HAM, Kallmeyer K, Dandara C, Pepper MS, Parker MI, Dzobo K (2017) The role of tumor microenvironment in chemoresistance: to survive, keep your enemies closer. Int J Mol Sci 18(7):pii: E1586.  https://doi.org/10.3390/ijms18071586CrossRefGoogle Scholar
  61. Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF, Kelley MJ, Gallez B, Wahl ML, Feron O, Dewhirst MW (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118(12):3930–3942.  https://doi.org/10.1172/JCI36843CrossRefPubMedPubMedCentralGoogle Scholar
  62. Sousa CM, Biancur DE, Wang X, Halbrook CJ, Sherman MH, Zhang L, Kremer D, Hwang RF, Witkiewicz AK, Ying H, Asara JM, Evans RM, Cantley LC, Lyssiotis CA, Kimmelman AC (2016) Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536(7617):479–483.  https://doi.org/10.1038/nature19084CrossRefPubMedPubMedCentralGoogle Scholar
  63. Sullivan LB, Gui DY, Hosios AM, Bush LN, Freinkman E, Vander Heiden MG (2015) Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell 162(3):552–563.  https://doi.org/10.1016/j.cell.2015.07.017CrossRefPubMedPubMedCentralGoogle Scholar
  64. Taddei ML, Giannoni E, Comito G, Chiarugi P (2013) Microenvironment and tumor cell plasticity: an easy way out. Cancer Lett 341(1):80–96.  https://doi.org/10.1016/j.canlet.2013.01.042CrossRefPubMedGoogle Scholar
  65. Tajan M, Vousden KH (2016) The quid pro quo of the tumor/stromal interaction. Cell Metab 24(5):645–646.  https://doi.org/10.1016/j.cmet.2016.10.017CrossRefPubMedGoogle Scholar
  66. Tang X, Lucas JE, Chen JL, LaMonte G, Wu J, Wang MC, Koumenis C, Chi JT (2012) Functional interaction between responses to lactic acidosis and hypoxia regulates genomic transcriptional outputs. Cancer Res 72(2):491–502.  https://doi.org/10.1158/0008-5472.CAN-11-2076CrossRefPubMedGoogle Scholar
  67. Tardito S, Oudin A, Ahmed SU, Fack F, Keunen O, Zheng L, Miletic H, Sakariassen PO, Weinstock A, Wagner A, Lindsay SL, Hock AK, Barnett SC, Ruppin E, Morkve SH, Lund-Johansen M, Chalmers AJ, Bjerkvig R, Niclou SP, Gottlieb E (2015) Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat Cell Biol 17(12):1556–1568.  https://doi.org/10.1038/ncb3272CrossRefPubMedPubMedCentralGoogle Scholar
  68. Verma A, Lam YM, Leung YC, Hu X, Chen X, Cheung E, Tam KY (2019) Combined use of arginase and dichloroacetate exhibits anti-proliferative effects in triple negative breast cancer cells. J Pharm Pharmacol 71(3):306–315.  https://doi.org/10.1111/jphp.13033CrossRefPubMedGoogle Scholar
  69. Warburg O (1956a) On respiratory impairment in cancer cells. Science 124(3215):269–270Google Scholar
  70. Warburg O (1956b) On the origin of cancer cells. Science 123(3191):309–314CrossRefGoogle Scholar
  71. Ward NP, Poff AM, Koutnik AP, D’Agostino DP (2017) Complex I inhibition augments dichloroacetate cytotoxicity through enhancing oxidative stress in VM-M3 glioblastoma cells. PLoS One 12(6):e0180061.  https://doi.org/10.1371/journal.pone.0180061CrossRefPubMedPubMedCentralGoogle Scholar
  72. Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, Kalyanaraman B, Mutlu GM, Budinger GR, Chandel NS (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci U S A 107(19):8788–8793.  https://doi.org/10.1073/pnas.1003428107CrossRefPubMedPubMedCentralGoogle Scholar
  73. Wise DR, Ward PS, Shay JE, Cross JR, Gruber JJ, Sachdeva UM, Platt JM, DeMatteo RG, Simon MC, Thompson CB (2011) Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci U S A 108(49):19611–19616.  https://doi.org/10.1073/pnas.1117773108CrossRefPubMedPubMedCentralGoogle Scholar
  74. Xuan Y, Hur H, Ham IH, Yun J, Lee JY, Shim W, Kim YB, Lee G, Han SU, Cho YK (2014) Dichloroacetate attenuates hypoxia-induced resistance to 5-fluorouracil in gastric cancer through the regulation of glucose metabolism. Exp Cell Res 321(2):219–230.  https://doi.org/10.1016/j.yexcr.2013.12.009CrossRefPubMedGoogle Scholar
  75. Yang M, Vousden KH (2016) Serine and one-carbon metabolism in cancer. Nat Rev Cancer 16(10):650–662.  https://doi.org/10.1038/nrc.2016.81CrossRefPubMedGoogle Scholar
  76. Yang L, Achreja A, Yeung TL, Mangala LS, Jiang D, Han C, Baddour J, Marini JC, Ni J, Nakahara R, Wahlig S, Chiba L, Kim SH, Morse J, Pradeep S, Nagaraja AS, Haemmerle M, Kyunghee N, Derichsweiler M, Plackemeier T, Mercado-Uribe I, Lopez-Berestein G, Moss T, Ram PT, Liu J, Lu X, Mok SC, Sood AK, Nagrath D (2016) Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth. Cell Metab 24(5):685–700.  https://doi.org/10.1016/j.cmet.2016.10.011CrossRefPubMedGoogle Scholar
  77. Ye J, Fan J, Venneti S, Wan YW, Pawel BR, Zhang J, Finley LW, Lu C, Lindsten T, Cross JR, Qing G, Liu Z, Simon MC, Rabinowitz JD, Thompson CB (2014) Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Discov 4(12):1406–1417.  https://doi.org/10.1158/2159-8290.CD-14-0250CrossRefPubMedPubMedCentralGoogle Scholar
  78. Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y (2007) Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol 178(1):93–105.  https://doi.org/10.1083/jcb.200703099CrossRefPubMedPubMedCentralGoogle Scholar
  79. Zhang J, Ahn WS, Gameiro PA, Keibler MA, Zhang Z, Stephanopoulos G (2014) 13C isotope-assisted methods for quantifying glutamine metabolism in cancer cells. Methods Enzymol 542:369–389.  https://doi.org/10.1016/B978-0-12-416618-9.00019-4CrossRefPubMedPubMedCentralGoogle Scholar
  80. Zhang J, Pavlova NN, Thompson CB (2017) Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine. EMBO J 36(10):1302–1315.  https://doi.org/10.15252/embj.201696151CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Université catholique de Louvain (UCLouvain), Louvain Drug Research InstituteBrusselsBelgium
  2. 2.Biomedical Magnetic ResonanceBrusselsBelgium

Personalised recommendations