Advertisement

Hydrogen Sulfide Metabolism and Signaling in the Tumor Microenvironment

  • Alessandro GiuffrèEmail author
  • Catarina S. Tomé
  • Dalila G. F. Fernandes
  • Karim Zuhra
  • João B. VicenteEmail author
Chapter
  • 215 Downloads
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1219)

Abstract

Hydrogen sulfide (H2S), while historically perceived merely as a toxicant, has progressively emerged as a key regulator of numerous processes in mammalian physiology, exerting its signaling function essentially through interaction with and/or modification of proteins, targeting mainly cysteine residues and metal centers. As a gaseous signaling molecule that freely diffuses across aqueous and hydrophobic biological milieu, it has been designated the third ‘gasotransmitter’ in mammalian physiology. H2S is synthesized and detoxified by specialized endogenous enzymes that operate under a tight regulation, ensuring homeostatic levels of this otherwise toxic molecule. Indeed, imbalances in H2S levels associated with dysfunctional H2S metabolism have been growingly correlated with various human pathologies, from cardiovascular and neurodegenerative diseases to cancer. Several cancer cell lines and specimens have been shown to naturally overexpress one or more of the H2S-synthesizing enzymes. The resulting increased H2S levels have been proposed to promote cancer development through the regulation of various cancer-related processes, which led to the interest in pharmacological targeting of H2S metabolism. Herein are summarized some of the key observations that place H2S metabolism and signaling pathways at the forefront of the cellular mechanisms that support the establishment and development of a tumor within its complex and challenging microenvironment. Special emphasis is given to the mechanisms whereby H2S helps shaping cancer cell bioenergetic metabolism and affords resistance and adaptive mechanisms to hypoxia.

Keywords

Hydrogen sulfide Tumor microenvironment Hypoxia Cellular bioenergetics Persulfidation Cystathionine β-synthase Cystathionine γ-lyase 3-mercaptopyruvate sulfurtransferase Sulfide oxidizing pathway 

Notes

Acknowledgments

The Authors are grateful for funding from Ministero dell’Istruzione, dell’Università e della Ricerca of Italy (PNR-CNR Aging Program 2012–2014 and PRIN 20158EB2CM_003). iNOVA4Health Research Unit (LISBOA-01-0145-FEDER-007344), which is cofunded by Fundação para a Ciência e Tecnologia/Ministério da Ciência e do Ensino Superior, through national funds, and by FEDER under the PT2020 Partnership Agreement, is acknowledged by CST and JBV.

References

  1. Abdollahi Govar A et al (2019) 3-Mercaptopyruvate sulfurtransferase supports endothelial cell angiogenesis and bioenergetics. Br J Pharmacol (in press)Google Scholar
  2. Abou-Hamdan A et al (2016) Positive feedback during sulfide oxidation fine-tunes cellular affinity for oxygen. Biochim Biophys Acta 1857(9):1464–1472PubMedCrossRefPubMedCentralGoogle Scholar
  3. Akaike T et al (2017) Cysteinyl-tRNA synthetase governs cysteine polysulfidation and mitochondrial bioenergetics. Nat Commun 8(1):1177PubMedPubMedCentralCrossRefGoogle Scholar
  4. Augsburger F, Szabo C (2018) Potential role of the 3-mercaptopyruvate sulfurtransferase (3-MST)-hydrogen sulfide (H2S) pathway in cancer cells. Pharmacol Res:104083Google Scholar
  5. Banerjee R (2017) Catalytic promiscuity and heme-dependent redox regulation of H2S synthesis. Curr Opin Chem Biol 37:115–121PubMedPubMedCentralCrossRefGoogle Scholar
  6. Banerjee R, Zou CG (2005) Redox regulation and reaction mechanism of human cystathionine-beta-synthase: a PLP-dependent hemesensor protein. Arch Biochem Biophys 433(1):144–156PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bao L et al (1998) Identification and tissue distribution of human cystathionine beta-synthase mRNA isoforms. Arch Biochem Biophys 350(1):95–103PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bhattacharyya S et al (2013) Cystathionine beta-synthase (CBS) contributes to advanced ovarian cancer progression and drug resistance. PLoS One 8(11):e79167PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bianco CL et al (2016) The chemical biology of the persulfide (RSSH)/perthiyl (RSS.) redox couple and possible role in biological redox signaling. Free Radic Biol Med 101:20–31Google Scholar
  10. Bianco S et al (2017) Hypoxia and hydrogen sulfide differentially affect normal and tumor-derived vascular endothelium. Redox Biol 12:499–504PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bos EM et al (2015) Hydrogen sulfide: physiological properties and therapeutic potential in ischaemia. Br J Pharmacol 172(6):1479–1493PubMedPubMedCentralCrossRefGoogle Scholar
  12. Budde MW, Roth MB (2010) Hydrogen sulfide increases hypoxia-inducible factor-1 activity independently of von Hippel-Lindau tumor suppressor-1 in C. elegans. Mol Biol Cell 21(1):212–217PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cai WJ et al (2007) The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation. Cardiovasc Res 76(1):29–40PubMedCrossRefPubMedCentralGoogle Scholar
  14. Cao X et al (2019) A review of hydrogen sulfide synthesis, metabolism, and measurement: is modulation of hydrogen sulfide a novel therapeutic for cancer? Antioxid Redox Signal 31(1):1–38PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cooper CE, Brown GC (2008) The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. J Bioenerg Biomembr 40(5):533–539PubMedCrossRefPubMedCentralGoogle Scholar
  16. Cuevasanta E, Moller MN, Alvarez B (2017) Biological chemistry of hydrogen sulfide and persulfides. Arch Biochem Biophys 617:9–25PubMedCrossRefPubMedCentralGoogle Scholar
  17. Druzhyna N et al (2016) Screening of a composite library of clinically used drugs and well-characterized pharmacological compounds for cystathionine beta-synthase inhibition identifies benserazide as a drug potentially suitable for repurposing for the experimental therapy of colon cancer. Pharmacol Res 113(Pt A):18–37PubMedPubMedCentralCrossRefGoogle Scholar
  18. Ereno-Orbea J et al (2013) Structural basis of regulation and oligomerization of human cystathionine beta-synthase, the central enzyme of transsulfuration. Proc Natl Acad Sci U S A 110(40):E3790–E3799PubMedPubMedCentralCrossRefGoogle Scholar
  19. Ereno-Orbea J et al (2014) Structural insight into the molecular mechanism of allosteric activation of human cystathionine beta-synthase by S-adenosylmethionine. Proc Natl Acad Sci U S A 111(37):E3845–E3852PubMedPubMedCentralCrossRefGoogle Scholar
  20. Fagerberg L et al (2014) Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics 13(2):397–406PubMedCrossRefPubMedCentralGoogle Scholar
  21. Fawcett EM et al (2015) Hypoxia disrupts proteostasis in Caenorhabditis elegans. Aging Cell 14(1):92–101PubMedCrossRefPubMedCentralGoogle Scholar
  22. Filipovic MR et al (2018) Chemical biology of H2S signaling through persulfidation. Chem Rev 118(3):1253–1337PubMedCrossRefPubMedCentralGoogle Scholar
  23. Frasdorf B, Radon C, Leimkuhler S (2014) Characterization and interaction studies of two isoforms of the dual localized 3-mercaptopyruvate sulfurtransferase TUM1 from humans. J Biol Chem 289(50):34543–34556PubMedPubMedCentralCrossRefGoogle Scholar
  24. Fu M et al (2012) Hydrogen sulfide (H2S) metabolism in mitochondria and its regulatory role in energy production. Proc Natl Acad Sci U S A 109(8):2943–2948PubMedPubMedCentralCrossRefGoogle Scholar
  25. Giuffrè A, Vicente JB (2018) Hydrogen sulfide biochemistry and interplay with other gaseous mediators in mammalian physiology. Oxidative Med Cell Longev 2018:6290931CrossRefGoogle Scholar
  26. Giuffrè A et al (2002) Nitric oxide reacts with the single-electron reduced active site of cytochrome c oxidase. J Biol Chem 277(25):22402–22406PubMedCrossRefPubMedCentralGoogle Scholar
  27. Goncalves-Dias C et al (2019) Mercapturate pathway in the tubulocentric perspective of diabetic kidney disease. Nephron:1–7Google Scholar
  28. Goubern M et al (2007) Sulfide, the first inorganic substrate for human cells. FASEB J 21(8):1699–1706CrossRefGoogle Scholar
  29. Hellmich MR et al (2015) The therapeutic potential of cystathionine beta-synthetase/hydrogen sulfide inhibition in cancer. Antioxid Redox Signal 22(5):424–448PubMedPubMedCentralCrossRefGoogle Scholar
  30. Hine C et al (2015) Endogenous hydrogen sulfide production is essential for dietary restriction benefits. Cell 160(1–2):132–144PubMedCrossRefGoogle Scholar
  31. Ianaro A, Cirino G, Wallace JL (2016) Hydrogen sulfide-releasing anti-inflammatory drugs for chemoprevention and treatment of cancer. Pharmacol Res 111:652–658PubMedCrossRefGoogle Scholar
  32. Ida T et al (2014) Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. Proc Natl Acad Sci U S A 111(21):7606–7611PubMedPubMedCentralCrossRefGoogle Scholar
  33. Jackson MR, Loll PJ, Jorns MS (2019) X-ray structure of human sulfide: quinone oxidoreductase: insights into the mechanism of mitochondrial hydrogen sulfide oxidation. Structure 27(5):794–805. e4PubMedCrossRefGoogle Scholar
  34. Jarosz AP et al (2015) Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is inactivated by S-sulfuration in vitro. Free Radic Biol Med 89:512–521PubMedCrossRefGoogle Scholar
  35. Jensen AR et al (2017) Hydrogen sulfide: a potential novel therapy for the treatment of ischemia. Shock 48(5):511–524PubMedCrossRefGoogle Scholar
  36. Kabil O et al (2011) The quantitative significance of the transsulfuration enzymes for H2S production in murine tissues. Antioxid Redox Signal 15(2):363–372PubMedPubMedCentralCrossRefGoogle Scholar
  37. Kai S et al (2012) Hydrogen sulfide inhibits hypoxia- but not anoxia-induced hypoxia-inducible factor 1 activation in a von hippel-lindau- and mitochondria-dependent manner. Antioxid Redox Signal 16(3):203–216PubMedPubMedCentralCrossRefGoogle Scholar
  38. Kasamatsu S et al (2016) Redox signaling regulated by cysteine persulfide and protein polysulfidation. Molecules 21(12):E1721PubMedCrossRefGoogle Scholar
  39. Kimura Y et al (2017) 3-Mercaptopyruvate sulfurtransferase produces potential redox regulators cysteine- and glutathione-persulfide (Cys-SSH and GSSH) together with signaling molecules H2S2, H2S3 and H2S. Sci Rep 7(1):10459PubMedPubMedCentralCrossRefGoogle Scholar
  40. Kumar A et al (2018) Heme interaction of the intrinsically disordered N-terminal peptide segment of human cystathionine-beta-synthase. Sci Rep 8(1):2474PubMedPubMedCentralCrossRefGoogle Scholar
  41. Lagoutte E et al (2010) Oxidation of hydrogen sulfide remains a priority in mammalian cells and causes reverse electron transfer in colonocytes. Biochim Biophys Acta 1797(8):1500–1511PubMedCrossRefPubMedCentralGoogle Scholar
  42. Lencesova L et al (2016) Hypoxic conditions increases H(2)S-induced ER stress in A2870 cells. Mol Cell Biochem 414(1–2):67–76PubMedCrossRefPubMedCentralGoogle Scholar
  43. Leschelle X et al (2005) Adaptative metabolic response of human colonic epithelial cells to the adverse effects of the luminal compound sulfide. Biochim Biophys Acta 1725(2):201–212PubMedCrossRefPubMedCentralGoogle Scholar
  44. Leskova A et al (2017) Role of thiosulfate in hydrogen sulfide-dependent redox signaling in endothelial cells. Am J Physiol Heart Circ Physiol 313(2):H256–H264PubMedPubMedCentralCrossRefGoogle Scholar
  45. Libiad M et al (2014) Organization of the human mitochondrial hydrogen sulfide oxidation pathway. J Biol Chem 289(45):30901–30910PubMedPubMedCentralCrossRefGoogle Scholar
  46. Libiad M et al (2019) Hydrogen sulfide perturbs mitochondrial bioenergetics and triggers metabolic reprogramming in colon cells. J Biol Chem 294(32):12077–12090PubMedCrossRefPubMedCentralGoogle Scholar
  47. Linden DR et al (2012) Sulphide quinone reductase contributes to hydrogen sulphide metabolism in murine peripheral tissues but not in the CNS. Br J Pharmacol 165(7):2178–2190PubMedPubMedCentralCrossRefGoogle Scholar
  48. Malagrino F et al (2019) Hydrogen sulfide oxidation: adaptive changes in mitochondria of SW480 colorectal cancer cells upon exposure to hypoxia. Oxidative Med Cell Longev 2019:8102936CrossRefGoogle Scholar
  49. Marutani E et al (2015) Thiosulfate mediates cytoprotective effects of hydrogen sulfide against neuronal ischemia. J Am Heart Assoc 4(11):e002125PubMedPubMedCentralCrossRefGoogle Scholar
  50. Masson N, Ratcliffe PJ (2014) Hypoxia signaling pathways in cancer metabolism: the importance of co-selecting interconnected physiological pathways. Cancer Metab 2(1):3PubMedPubMedCentralCrossRefGoogle Scholar
  51. Mastronicola D et al (2003) Control of respiration by nitric oxide in Keilin-Hartree particles, mitochondria and SH-SY5Y neuroblastoma cells. Cell Mol Life Sci 60(8):1752–1759PubMedCrossRefPubMedCentralGoogle Scholar
  52. Matallo J et al (2014) Sulfide-inhibition of mitochondrial respiration at very low oxygen concentrations. Nitric Oxide 41:79–84PubMedPubMedCentralCrossRefGoogle Scholar
  53. McCorvie TJ et al (2014) Inter-domain communication of human cystathionine beta-synthase: structural basis of S-adenosyl-L-methionine activation. J Biol Chem 289(52):36018–36030PubMedPubMedCentralCrossRefGoogle Scholar
  54. Millikin R et al (2016) The chemical biology of protein hydropersulfides: studies of a possible protective function of biological hydropersulfide generation. Free Radic Biol Med 97:136–147PubMedPubMedCentralCrossRefGoogle Scholar
  55. Mishanina TV, Libiad M, Banerjee R (2015) Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. Nat Chem Biol 11(7):457–464PubMedPubMedCentralCrossRefGoogle Scholar
  56. Modis K et al (2013) Intramitochondrial hydrogen sulfide production by 3-mercaptopyruvate sulfurtransferase maintains mitochondrial electron flow and supports cellular bioenergetics. FASEB J 27(2):601–611PubMedCrossRefPubMedCentralGoogle Scholar
  57. Modis K et al (2016) S-Sulfhydration of ATP synthase by hydrogen sulfide stimulates mitochondrial bioenergetics. Pharmacol Res 113(Pt A):116–124PubMedPubMedCentralCrossRefGoogle Scholar
  58. Morikawa T et al (2012) Hypoxic regulation of the cerebral microcirculation is mediated by a carbon monoxide-sensitive hydrogen sulfide pathway. Proc Natl Acad Sci U S A 109(4):1293–1298PubMedPubMedCentralCrossRefGoogle Scholar
  59. Mudd SH et al (1965) Transsulfuration in mammals. Microassays and tissue distributions of three enzymes of the pathway. J Biol Chem 240(11):4382–4392PubMedPubMedCentralGoogle Scholar
  60. Mustafa AK et al (2009) H2S signals through protein S-sulfhydration. Sci Signal 2(96):ra72PubMedPubMedCentralCrossRefGoogle Scholar
  61. Mustafa AK et al (2011) Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res 109(11):1259–1268PubMedPubMedCentralCrossRefGoogle Scholar
  62. Muz B et al (2015) The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl) 3:83–92CrossRefGoogle Scholar
  63. Nagy P (2015) Mechanistic chemical perspective of hydrogen sulfide signaling. Methods Enzymol 554:3–29PubMedCrossRefPubMedCentralGoogle Scholar
  64. Nicholls P et al (2013) Sulfide inhibition of and metabolism by cytochrome c oxidase. Biochem Soc Trans 41(5):1312–1316PubMedCrossRefPubMedCentralGoogle Scholar
  65. Niu WN et al (2015) S-glutathionylation enhances human cystathionine beta-synthase activity under oxidative stress conditions. Antioxid Redox Signal 22(5):350–361PubMedPubMedCentralCrossRefGoogle Scholar
  66. Niu W et al (2018) Allosteric control of human cystathionine beta-synthase activity by a redox active disulfide bond. J Biol Chem 293(7):2523–2533PubMedPubMedCentralCrossRefGoogle Scholar
  67. Nunes SC et al (2018) Cysteine allows ovarian cancer cells to adapt to hypoxia and to escape from carboplatin cytotoxicity. Sci Rep 8(1):9513PubMedPubMedCentralCrossRefGoogle Scholar
  68. Ogasawara Y, Isoda S, Tanabe S (1994) Tissue and subcellular distribution of bound and acid-labile sulfur, and the enzymic capacity for sulfide production in the rat. Biol Pharm Bull 17(12):1535–1542PubMedCrossRefPubMedCentralGoogle Scholar
  69. Olson KR (2015) Hydrogen sulfide as an oxygen sensor. Antioxid Redox Signal 22(5):377–397PubMedPubMedCentralCrossRefGoogle Scholar
  70. Olson KR et al (2006) Hydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hypoxic vasodilation. J Exp Biol 209(Pt 20):4011–4023PubMedCrossRefPubMedCentralGoogle Scholar
  71. Papapetropoulos A et al (2009) Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc Natl Acad Sci U S A 106(51):21972–21977PubMedPubMedCentralCrossRefGoogle Scholar
  72. Paul BD, Snyder SH (2015) H2S: a novel gasotransmitter that signals by sulfhydration. Trends Biochem Sci 40(11):687–700PubMedPubMedCentralCrossRefGoogle Scholar
  73. Petersen LC (1977) The effect of inhibitors on the oxygen kinetics of cytochrome c oxidase. Biochim Biophys Acta 460(2):299–307PubMedCrossRefPubMedCentralGoogle Scholar
  74. Pettinati I et al (2015) Crystal structure of human persulfide dioxygenase: structural basis of ethylmalonic encephalopathy. Hum Mol Genet 24(9):2458–2469PubMedPubMedCentralCrossRefGoogle Scholar
  75. Pietri R, Roman-Morales E, Lopez-Garriga J (2011) Hydrogen sulfide and hemeproteins: knowledge and mysteries. Antioxid Redox Signal 15(2):393–404PubMedPubMedCentralCrossRefGoogle Scholar
  76. Puccinelli MT, Stan SD (2017) Dietary bioactive diallyl trisulfide in cancer prevention and treatment. Int J Mol Sci 18(8):E1645PubMedCrossRefPubMedCentralGoogle Scholar
  77. Reis A, Stern A, Monteiro HP (2019) S-nitrosothiols and H2S donors: potential chemo-therapeutic agents in cancer. Redox Biol 27:101190Google Scholar
  78. Rios-Gonzalez BB et al (2014) Hydrogen sulfide activation in hemeproteins: the sulfheme scenario. J Inorg Biochem 133:78–86PubMedPubMedCentralCrossRefGoogle Scholar
  79. Rockwell S et al (2009) Hypoxia and radiation therapy: past history, ongoing research, and future promise. Curr Mol Med 9(4):442–458PubMedPubMedCentralCrossRefGoogle Scholar
  80. Rose P et al (2005) Hydrogen sulfide protects colon cancer cells from chemopreventative agent beta-phenylethyl isothiocyanate induced apoptosis. World J Gastroenterol 11(26):3990–3997PubMedPubMedCentralCrossRefGoogle Scholar
  81. Saha S et al (2016) Cystathionine beta-synthase regulates endothelial function via protein S-sulfhydration. FASEB J 30(1):441–456PubMedCrossRefPubMedCentralGoogle Scholar
  82. Samanta D, Semenza GL (2018) Metabolic adaptation of cancer and immune cells mediated by hypoxia-inducible factors. Biochim Biophys Acta Rev Cancer 1870(1):15–22PubMedCrossRefPubMedCentralGoogle Scholar
  83. Sarti P et al (2012) The chemical interplay between nitric oxide and mitochondrial cytochrome c oxidase: reactions, effectors and pathophysiology. Int J Cell Biol 2012:571067PubMedPubMedCentralCrossRefGoogle Scholar
  84. Sekiguchi F et al (2016) Endogenous hydrogen sulfide enhances cell proliferation of human gastric cancer AGS cells. Biol Pharm Bull 39(5):887–890CrossRefGoogle Scholar
  85. Semenza GL (2006) Regulation of physiological responses to continuous and intermittent hypoxia by hypoxia-inducible factor 1. Exp Physiol 91(5):803–806PubMedCrossRefPubMedCentralGoogle Scholar
  86. Smith RP, Gosselin RE (1966) On the mechanism of sulfide inactivation by methemoglobin. Toxicol Appl Pharmacol 8(1):159–172PubMedCrossRefPubMedCentralGoogle Scholar
  87. Solaini G et al (2010) Hypoxia and mitochondrial oxidative metabolism. Biochim Biophys Acta 1797(6–7):1171–1177PubMedCrossRefPubMedCentralGoogle Scholar
  88. Stokes E et al (2018) Efflux inhibition by H2S confers sensitivity to doxorubicin-induced cell death in liver cancer cells. Life Sci 213:116–125PubMedCrossRefPubMedCentralGoogle Scholar
  89. Sun Q et al (2009) Structural basis for the inhibition mechanism of human cystathionine gamma-lyase, an enzyme responsible for the production of H(2)S. J Biol Chem 284(5):3076–3085PubMedCrossRefPubMedCentralGoogle Scholar
  90. Szabo C (2016) Gasotransmitters in cancer: from pathophysiology to experimental therapy. Nat Rev Drug Discov 15(3):185–203PubMedCrossRefPubMedCentralGoogle Scholar
  91. Szabo C et al (2013) Tumor-derived hydrogen sulfide, produced by cystathionine-beta-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer. Proc Natl Acad Sci U S A 110(30):12474–12479PubMedPubMedCentralCrossRefGoogle Scholar
  92. Szabo C et al (2014) Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms. Br J Pharmacol 171(8):2099–2122PubMedPubMedCentralCrossRefGoogle Scholar
  93. Szczesny B et al (2016) Inhibition of hydrogen sulfide biosynthesis sensitizes lung adenocarcinoma to chemotherapeutic drugs by inhibiting mitochondrial DNA repair and suppressing cellular bioenergetics. Sci Rep 6:36125PubMedPubMedCentralCrossRefGoogle Scholar
  94. Takano N et al (2014) Hypoxia-inducible factors regulate human and rat cystathionine beta-synthase gene expression. Biochem J 458(2):203–211PubMedPubMedCentralCrossRefGoogle Scholar
  95. Tang G et al (2005) Direct stimulation of K(ATP) channels by exogenous and endogenous hydrogen sulfide in vascular smooth muscle cells. Mol Pharmacol 68(6):1757–1764PubMedCrossRefPubMedCentralGoogle Scholar
  96. Teng H et al (2013) Oxygen-sensitive mitochondrial accumulation of cystathionine beta-synthase mediated by Lon protease. Proc Natl Acad Sci U S A 110(31):12679–12684PubMedPubMedCentralCrossRefGoogle Scholar
  97. Tiong CX, Lu M, Bian JS (2010) Protective effect of hydrogen sulphide against 6-OHDA-induced cell injury in SH-SY5Y cells involves PKC/PI3K/Akt pathway. Br J Pharmacol 161(2):467–480PubMedPubMedCentralCrossRefGoogle Scholar
  98. Tomita M, Nagahara N, Ito T (2016) Expression of 3-mercaptopyruvate sulfurtransferase in the mouse. Molecules 21(12):E1707PubMedCrossRefPubMedCentralGoogle Scholar
  99. Untereiner AA et al (2018) Drug resistance induces the upregulation of H2S-producing enzymes in HCT116 colon cancer cells. Biochem Pharmacol 149:174–185PubMedCrossRefPubMedCentralGoogle Scholar
  100. Valvona CJ et al (2016) The regulation and function of lactate dehydrogenase a: therapeutic potential in brain tumor. Brain Pathol 26(1):3–17CrossRefGoogle Scholar
  101. Vicente JB et al (2014) NO∗ binds human cystathionine beta-synthase quickly and tightly. J Biol Chem 289(12):8579–8587PubMedPubMedCentralCrossRefGoogle Scholar
  102. Vicente JB et al (2016a) Bioenergetic relevance of hydrogen sulfide and the interplay between gasotransmitters at human cystathionine beta-synthase. Biochim Biophys Acta 1857(8):1127–1138PubMedCrossRefPubMedCentralGoogle Scholar
  103. Vicente JB et al (2016b) S-Adenosyl-l-methionine modulates CO and NO∗ binding to the human H2S-generating enzyme cystathionine beta-synthase. J Biol Chem 291(2):572–581PubMedCrossRefPubMedCentralGoogle Scholar
  104. Vitvitsky V, Kabil O, Banerjee R (2012) High turnover rates for hydrogen sulfide allow for rapid regulation of its tissue concentrations. Antioxid Redox Signal 17(1):22–31PubMedPubMedCentralCrossRefGoogle Scholar
  105. Vitvitsky V et al (2015) Sulfide oxidation by a noncanonical pathway in red blood cells generates thiosulfate and polysulfides. J Biol Chem 290(13):8310–8320PubMedPubMedCentralCrossRefGoogle Scholar
  106. Vitvitsky V et al (2017) Structural and mechanistic insights into hemoglobin-catalyzed hydrogen sulfide oxidation and the fate of polysulfide products. J Biol Chem 292(13):5584–5592PubMedPubMedCentralCrossRefGoogle Scholar
  107. Wallace JL et al (2018) Hydrogen sulfide-releasing therapeutics: translation to the clinic. Antioxid Redox Signal 28(16):1533–1540PubMedCrossRefPubMedCentralGoogle Scholar
  108. Wang R (2012) Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 92(2):791–896CrossRefGoogle Scholar
  109. Wang M, Guo Z, Wang S (2014) Regulation of cystathionine gamma-lyase in mammalian cells by hypoxia. Biochem Genet 52(1–2):29–37PubMedCrossRefPubMedCentralGoogle Scholar
  110. Wang L et al (2018) A pharmacological probe identifies cystathionine beta-synthase as a new negative regulator for ferroptosis. Cell Death Dis 9(10):1005PubMedPubMedCentralCrossRefGoogle Scholar
  111. Warburg O (1956a) On respiratory impairment in cancer cells. Science 124(3215):269–270PubMedPubMedCentralGoogle Scholar
  112. Warburg O (1956b) On the origin of cancer cells. Science 123(3191):309–314CrossRefGoogle Scholar
  113. Wu H, Chen Q (2015) Hypoxia activation of mitophagy and its role in disease pathogenesis. Antioxid Redox Signal 22(12):1032–1046PubMedCrossRefPubMedCentralGoogle Scholar
  114. Wu B et al (2012) Hydrogen sulfide inhibits the translational expression of hypoxia-inducible factor-1alpha. Br J Pharmacol 167(7):1492–1505PubMedPubMedCentralCrossRefGoogle Scholar
  115. Xie H, Simon MC (2017) Oxygen availability and metabolic reprogramming in cancer. J Biol Chem 292(41):16825–16832PubMedPubMedCentralCrossRefGoogle Scholar
  116. Yadav PK et al (2013) Structure and kinetic analysis of H2S production by human mercaptopyruvate sulfurtransferase. J Biol Chem 288(27):20002–20013PubMedPubMedCentralCrossRefGoogle Scholar
  117. Yadav PK et al (2016) Biosynthesis and reactivity of cysteine persulfides in signaling. J Am Chem Soc 138(1):289–299PubMedCrossRefPubMedCentralGoogle Scholar
  118. Yagdi E et al (2016) Garlic-derived natural polysulfanes as hydrogen sulfide donors: friend or foe? Food Chem Toxicol 95:219–233PubMedCrossRefPubMedCentralGoogle Scholar
  119. Yang G et al (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322(5901):587–590PubMedPubMedCentralCrossRefGoogle Scholar
  120. Yang G et al (2013) Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. Antioxid Redox Signal 18(15):1906–1919PubMedCrossRefPubMedCentralGoogle Scholar
  121. Yee Koh M, Spivak-Kroizman TR, Powis G (2008) HIF-1 regulation: not so easy come, easy go. Trends Biochem Sci 33(11):526–534PubMedCrossRefPubMedCentralGoogle Scholar
  122. Yuan G et al (2015) Protein kinase G-regulated production of H2S governs oxygen sensing. Sci Signal 8(373):ra37PubMedPubMedCentralCrossRefGoogle Scholar
  123. Zhang H et al (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283(16):10892–10903PubMedPubMedCentralCrossRefGoogle Scholar
  124. Zhang J et al (2011) Hydrogen sulfide contributes to hypoxia-induced radioresistance on hepatoma cells. J Radiat Res 52(5):622–628PubMedCrossRefPubMedCentralGoogle Scholar
  125. Zhao K et al (2014) S-sulfhydration of MEK1 leads to PARP-1 activation and DNA damage repair. EMBO Rep 15(7):792–800PubMedPubMedCentralCrossRefGoogle Scholar
  126. Zhen Y et al (2015) Exogenous hydrogen sulfide exerts proliferation/anti-apoptosis/angiogenesis/migration effects via amplifying the activation of NF-kappaB pathway in PLC/PRF/5 hepatoma cells. Int J Oncol 46(5):2194–2204PubMedCrossRefPubMedCentralGoogle Scholar
  127. Zuhra K et al (2019) Screening pyridine derivatives against human hydrogen sulfide-synthesizing enzymes by orthogonal methods. Sci Rep 9(1):684PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Alessandro Giuffrè
    • 1
    Email author
  • Catarina S. Tomé
    • 2
  • Dalila G. F. Fernandes
    • 2
  • Karim Zuhra
    • 1
    • 3
  • João B. Vicente
    • 2
    Email author
  1. 1.CNR Institute of Molecular Biology and PathologyRomeItaly
  2. 2.Instituto de Tecnologia Química e Biológica António XavierNOVA University of LisbonOeirasPortugal
  3. 3.Department of Biochemical SciencesSapienza University of RomeRomeItaly

Personalised recommendations