Advertisement

Melanoma Metabolism: Cell Survival and Resistance to Therapy

  • Rafael Luís
  • Cheila Brito
  • Marta Pojo
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1219)

Abstract

Cutaneous melanoma is one of the most aggressive types of cancer, presenting the highest potential to form metastases, both locally and distally, which are associated with high death rates of melanoma patients. A high somatic mutation burden is characteristic of these tumours, with most common oncogenic mutations occurring in the BRAF, NRAS and NF1 genes. These intrinsic oncogenic pathways contribute to the metabolic switch between glycolysis and oxidative phosphorylation metabolisms of melanoma, facilitating tumour progression and resulting in a high plasticity and adaptability to unfavourable conditions. Moreover, melanoma microenvironment can influence its own metabolism and reprogram several immune cell subset functions, enabling melanoma to evade the immune system. The knowledge of the biology, molecular alterations and microenvironment of melanoma has led to the development of new targeted therapies and the improvement of patient care. In this work, we reviewed the impact of melanoma metabolism in the resistance to BRAF and MEK inhibitors and immunotherapies, emphasizing the requirement to evaluate metabolic alterations upon development of novel therapeutic approaches. Here we summarized the current understanding of the impact of metabolic processes in melanomagenesis, metastasis and microenvironment, as well as the involvement of metabolic pathways in the immune modulation and resistance to targeted and immunocheckpoint therapies.

Keywords

Melanoma Metabolic profile Microenvironment Immunotherapy Targeted therapy Oncogenic mutations 

Notes

Acknowledgments

The authors would like to thank the support of Liga Portuguesa Contra o Cancro, Núcleo Regional Sul (LPCC-NRS). The authors acknowledge iNOVA4Health – UID/Multi/04462/2013, a program financially supported by Fundação para a Ciência e Tecnologia/Ministério da Educação e Ciência, through national funds and co-funded by FEDER under the PT2020 Partnership Agreement. Sérgio Abreu was responsible for the design of figures.

References

  1. Abildgaard C, Guldberg P (2015) Molecular drivers of cellular metabolic reprogramming in melanoma. Trends Mol Med 21:164–171.  https://doi.org/10.1016/j.molmed.2014.12.007CrossRefGoogle Scholar
  2. Aiderus A, Black MA, Dunbier AK (2018) Fatty acid oxidation is associated with proliferation and prognosis in breast and other cancers. BMC Cancer 18:1–15.  https://doi.org/10.1186/s12885-018-4626-9CrossRefGoogle Scholar
  3. Alegre ML, Frauwirth KA, Thompson CB et al (2000) Inhibition of CTLA-4 function by the regulatory subunit of serine/threonine phosphatase 2A. J Immunol 168:5070–5078.  https://doi.org/10.4049/jimmunol.168.10.5070CrossRefGoogle Scholar
  4. Ali Z, Yousaf N, Larkin J (2013) Melanoma epidemiology, biology and prognosis. Eur J Cancer Suppl 11:81–91.  https://doi.org/10.1016/j.ejcsup.2013.07.012CrossRefGoogle Scholar
  5. Allemani C, Matsuda T, Di Carlo V et al (2018) Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet 391:1023–1075.  https://doi.org/10.1016/S0140-6736(17)33326-3CrossRefPubMedPubMedCentralGoogle Scholar
  6. Andreucci E, Pietrobono S, Peppicelli S et al (2018) SOX2 as a novel contributor of oxidative metabolism in melanoma cells. Cell Commun Signal 16:87.  https://doi.org/10.1186/s12964-018-0297-zCrossRefPubMedPubMedCentralGoogle Scholar
  7. Bandarchi B, Ma L, Navab R et al (2010) From melanocyte to metastatic malignant melanoma. Dermatol Res Pract 2010:1–8.  https://doi.org/10.1155/2010/583748CrossRefGoogle Scholar
  8. Bartolomé RA, Torres S, de Val SI et al (2017) VE-cadherin RGD motifs promote metastasis and constitute a potential therapeutic target in melanoma and breast cancers. Oncotarget 8:215–227.  https://doi.org/10.18632/oncotarget.13832CrossRefGoogle Scholar
  9. Bastian BC (2014) The molecular pathology of melanoma: an integrated taxonomy of melanocytic neoplasia. Annu Rev Pathol 9:239–271.  https://doi.org/10.1146/annurev-pathol-012513-104658CrossRefPubMedPubMedCentralGoogle Scholar
  10. Batus M, Waheed S, Ruby C et al (2013) Optimal management of metastatic melanoma: current strategies and future directions. Am J Clin Dermatol 14:179–194.  https://doi.org/10.1007/s40257-013-0025-9CrossRefPubMedPubMedCentralGoogle Scholar
  11. Brakebusch C (2003) The integrin-actin connection, an eternal love affair. EMBO J 22:2324–2333.  https://doi.org/10.1093/emboj/cdg245CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424.  https://doi.org/10.3322/caac.21492CrossRefGoogle Scholar
  13. Brody JR, Costantino CL, Berger AC et al (2009) Expression of indoleamine 2,3-dioxygenase in metastatic malignant melanoma recruits regulatory T cells to avoid immune detection and affects survival. Cell Cycle 8:1930–1934.  https://doi.org/10.4161/cc.8.12.8745CrossRefGoogle Scholar
  14. Burián Z, Ladányi A, Barbai T et al (2019) Selective inhibition of HIF1α expression by ZnSO4 has antitumoral effects in human melanoma. Pathol Oncol Res.  https://doi.org/10.1007/s12253-018-00573-1
  15. Cesi G, Walbrecq G, Zimmer A et al (2017) ROS production induced by BRAF inhibitor treatment rewires metabolic processes affecting cell growth of melanoma cells. Mol Cancer 16:1–16.  https://doi.org/10.1186/s12943-017-0667-yCrossRefGoogle Scholar
  16. Chae YC, Vaira V, Caino MC et al (2016) Mitochondrial Akt regulation of hypoxic tumor reprogramming. Cancer Cell 30:257–272.  https://doi.org/10.1016/j.ccell.2016.07.004CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chang C, Qiu J, Sullivan DO et al (2015) Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162:1229–1241.  https://doi.org/10.1016/j.cell.2015.08.016. MetabolicCrossRefPubMedPubMedCentralGoogle Scholar
  18. Chodon T, Comin-Anduix B, Chmielowski B et al (2014) Adoptive transfer of MART-1 T cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma. Clin Cancer Res 20:2457–2465.  https://doi.org/10.1158/1078-0432.CCR-13-3017CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cichorek M, Wachulska M, Stasiewicz A, Tymińska A (2013) Skin melanocytes: biology and development. Postep Dermatologii i Alergol:30:30–30:41.  https://doi.org/10.5114/pdia.2013.33376CrossRefGoogle Scholar
  20. Corazao-Rozas P, Guerreschi P, Jendoubi M et al (2013) Mitochondrial oxidative stress is the achille’s heel of melanoma cells resistant to Braf-mutant inhibitor. Oncotarget 4:1986–1998.  https://doi.org/10.18632/oncotarget.1420CrossRefPubMedPubMedCentralGoogle Scholar
  21. Couto N, Caja S, Maia J et al (2018) Exosomes as emerging players in cancer biology. Biochimie 155:2–10.  https://doi.org/10.1016/j.biochi.2018.03.006CrossRefGoogle Scholar
  22. Csóka B, Selmeczy Z, Koscsó B et al (2012) Adenosine promotes alternative macrophage activation via A2A and A2B receptors. FASEB J 26:376–386.  https://doi.org/10.1096/fj.11-190934CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dai DL, Martinka M, Li G (2005) Prognostic significance of activated Akt expression in melanoma: a clinicopathologic study of 292 cases. J Clin Oncol 23:1473–1482.  https://doi.org/10.1200/JCO.2005.07.168CrossRefGoogle Scholar
  24. Dang CV, Le A, Gao P (2009) MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res 15:6479–6483.  https://doi.org/10.1158/1078-0432.CCR-09-0889CrossRefPubMedPubMedCentralGoogle Scholar
  25. Davies H, Bignell GR, Cox C et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954.  https://doi.org/10.1038/nature00766CrossRefPubMedPubMedCentralGoogle Scholar
  26. Denker SP, Barber DL (2002) Cell migration requires both ion translocation and cytoskeletal anchoring by the Na-H exchanger NHE1. J Cell Biol 159:1087–1096.  https://doi.org/10.1083/jcb.200208050CrossRefPubMedPubMedCentralGoogle Scholar
  27. Dhomen N, Baenke F, Galbraith L et al (2015) Resistance to BRAF inhibitors induces glutamine dependency in melanoma cells. Mol Oncol 10:73–84.  https://doi.org/10.1016/j.molonc.2015.08.003CrossRefPubMedPubMedCentralGoogle Scholar
  28. Domingues B, Lopes J, Soares P, Populo H (2018) Melanoma treatment in review. ImmunoTargets Ther 7:35–49.  https://doi.org/10.2147/itt.s134842CrossRefPubMedPubMedCentralGoogle Scholar
  29. Durgeau A, Virk Y, Corgnac S, Mami-Chouaib F (2018) Recent advances in targeting CD8 T-cell immunity for more effective cancer immunotherapy. Front Immunol 9:14.  https://doi.org/10.3389/fimmu.2018.00014CrossRefPubMedPubMedCentralGoogle Scholar
  30. Emmanouilidi A, Falasca M (2017) Targeting PDK1 for chemosensitization of cancer cells. Cancers (Basel) 9:1–25.  https://doi.org/10.3390/cancers9100140CrossRefGoogle Scholar
  31. Eroglu Z, Ribas A (2016) Combination therapy with BRAF and MEK inhibitors for melanoma: latest evidence and place in therapy. Ther Adv Med Oncol 8:48–56.  https://doi.org/10.1177/1758834015616934CrossRefPubMedPubMedCentralGoogle Scholar
  32. Fischer GM, Gopal YNV, Mcquade JL et al (2019) Metabolic strategies of melanoma cells: mechanisms, interactions with the tumor microenvironment, and therapeutic implications. Pigment Cell Melanoma Res 31:713–745.  https://doi.org/10.1111/pcmr.12661. MetabolicCrossRefGoogle Scholar
  33. Fisel P, Schaeffeler E, Schwab M (2018) Clinical and functional relevance of the Monocarboxylate transporter family in disease pathophysiology and drug therapy. Clin Transl Sci 11:352–364.  https://doi.org/10.1111/cts.12551CrossRefPubMedPubMedCentralGoogle Scholar
  34. Fredholm BB, IJzerman AP, Jacobson KA et al (2001) International Union of pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552Google Scholar
  35. Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3:362–374.  https://doi.org/10.1038/nrc1075CrossRefGoogle Scholar
  36. Fuchs D, Margreiter R, Brandacher G et al (2011) IDO-mediated tryptophan degradation in the pathogenesis of malignant tumor disease. Int J Tryptophan Res 3:113–120.  https://doi.org/10.4137/ijtr.s4157CrossRefGoogle Scholar
  37. Fujimura T, Kakizaki A, Kambayashi Y et al (2018) Cytotoxic anti-melanoma drugs suppress the activation of M2 macrophages. Exp Dermatol 27:64–70.  https://doi.org/10.1111/exd.13417CrossRefGoogle Scholar
  38. Gabrilovich DI, Hurwitz AA (eds) (2014) Tumor-induced immune suppresion – mechanisms and therapeutic reversal, 2nd edn. Springer, New YorkGoogle Scholar
  39. Gao J, Shi LZ, Zhao H et al (2017) Loss of IFNγ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell 167:397–404.  https://doi.org/10.1016/j.cell.2016.08.069.LossCrossRefGoogle Scholar
  40. Garbe C, Leiter U (2009) Melanoma epidemiology and trends. Clin Dermatol 27:3–9.  https://doi.org/10.1016/j.clindermatol.2008.09.001CrossRefGoogle Scholar
  41. Garmy-Susini B, Avraamides CJ, Desgrosellier JS et al (2013) PI3Kα activates integrin α4β1 to establish a metastatic niche in lymph nodes. Proc Natl Acad Sci 110:9042–9047.  https://doi.org/10.1073/pnas.1219603110CrossRefGoogle Scholar
  42. Gerriets VA, Kishton RJ, Nichols AG et al (2015) Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J Clin Invest 125:194–207.  https://doi.org/10.1172/JCI76012CrossRefGoogle Scholar
  43. Gerriets VA, Kishton RJ, Johnson MO et al (2016) Foxp3 and toll-like receptor signaling balance T reg cell anabolic metabolism for suppression. Nat Immunol 17:1459–1466.  https://doi.org/10.1038/ni.3577CrossRefPubMedPubMedCentralGoogle Scholar
  44. Gogas HJ, Kirkwood JM, Sondak VK (2007) Chemotherapy for metastatic melanoma: time for a change? Cancer 109:455–464.  https://doi.org/10.1002/cncr.22427CrossRefGoogle Scholar
  45. Goldstein AM, Tucker MA (2013) Dysplastic nevi and melanoma. Cancer Epidemiol Biomarkers 22:528–532.  https://doi.org/10.1158/1055-9965.EPI-12-1346CrossRefGoogle Scholar
  46. Griffin M, Scotto D, Josephs DH et al (2017) BRAF inhibitors: resistance and the promise of combination treatments for melanoma. Oncotarget 8:78174–78192.  https://doi.org/10.18632/oncotarget.19836CrossRefPubMedPubMedCentralGoogle Scholar
  47. Guillot B, Dalac S, Delaunay M et al (2001) Cutaneous malignant melanoma and neurofibromatosis type 1. Melanoma Res 14:159–163.  https://doi.org/10.1097/01.cmr.0000124207.72344.38CrossRefGoogle Scholar
  48. Guy GP, Thomas CC, Thompson T et al (2015) Vital signs: melanoma incidence and mortality trends and projections – United States, 1982-2030. MMWR Morb Mortal Wkly Rep 64:591–596PubMedPubMedCentralGoogle Scholar
  49. Haq R, Fisher DE (2011) Biology and clinical relevance of the micropthalmia family of transcription factors in human cancer. J Clin Oncol 29:3474–3482.  https://doi.org/10.1200/JCO.2010.32.6223CrossRefGoogle Scholar
  50. Haq R, Shoag J, Andreu-Perez P et al (2013) Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF. Cancer Cell 23:302–315.  https://doi.org/10.1016/j.ccr.2013.02.003CrossRefPubMedPubMedCentralGoogle Scholar
  51. Hauschild A, Grob JJ, Demidov LV et al (2012) Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380:358–365.  https://doi.org/10.1016/S0140-6736(12)60868-XCrossRefGoogle Scholar
  52. Heppt MV, Siepmann T, Engel J et al (2017) Prognostic significance of BRAF and NRAS mutations in melanoma: a German study from routine care. BMC Cancer 17:536.  https://doi.org/10.1186/s12885-017-3529-5CrossRefPubMedPubMedCentralGoogle Scholar
  53. Hodis E, Watson IR, Kryukov GV et al (2012) A landscape of driver mutations in melanoma. Cell 150:251–263.  https://doi.org/10.1016/j.cell.2012.06.024CrossRefPubMedPubMedCentralGoogle Scholar
  54. Hofmann UB, Westphal JR, Van Muijen GNP, Ruiter DJ (2000) Matrix metalloproteinases in human melanoma. J Invest Dermatol 115:337–344.  https://doi.org/10.1046/j.1523-1747.2000.00068.xCrossRefGoogle Scholar
  55. Holness MJ, Sugden MC (2003) Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation. Biochem Soc Trans:1143–1151.  https://doi.org/10.1042/bst0311143CrossRefGoogle Scholar
  56. Hsiao JJ, Fisher DE (2015) The roles of Microphthalmia transcription factor and pigmentation in melanoma. Arch Biochem Biophys 563:28–34.  https://doi.org/10.1016/j.abb.2014.07.019.TheCrossRefGoogle Scholar
  57. Huang R, Rofstad EK (2018) Integrins as therapeutic targets in the organ-specific metastasis of human malignant melanoma. J Exp Clin Cancer Res 37:1–14.  https://doi.org/10.1186/s13046-018-0763-xCrossRefGoogle Scholar
  58. Itakura E, Huang R, Wen D et al (2011) IL-10 expression by primary tumor cells correlates with melanoma progression from radial to vertical growth phase and development of metastatic competence. Mod Pathol 24:801–809.  https://doi.org/10.1038/modpathol.2011.5.IL-10CrossRefPubMedPubMedCentralGoogle Scholar
  59. Johnson LA, Morgan RA, Dudley ME et al (2009) Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114:535–546.  https://doi.org/10.1182/blood-2009-03-211714CrossRefPubMedPubMedCentralGoogle Scholar
  60. Juneja VR, McGuire KA, Manguso RT et al (2017) PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J Exp Med 214:895–904.  https://doi.org/10.1084/jem.20160801CrossRefPubMedPubMedCentralGoogle Scholar
  61. Kakizaki A, Fujimura T, Furudate S et al (2015) Immunomodulatory effect of peritumorally administered interferon-beta on melanoma through tumor-associated macrophages. Oncoimmunology 4:1–9.  https://doi.org/10.1080/2162402X.2015.1047584CrossRefGoogle Scholar
  62. Kalal BS, Upadhya D, Pai VR (2017) Chemotherapy resistance mechanisms in advanced skin cancer. Oncol Rev 11:19–25.  https://doi.org/10.4081/oncol.2017.326CrossRefGoogle Scholar
  63. Karbowniczek M, Spittle CS, Morrison T et al (2008) mTOR is activated in the majority of malignant melanomas. J Invest Dermatol 128:980–987.  https://doi.org/10.1038/sj.jid.5701074CrossRefGoogle Scholar
  64. Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185.  https://doi.org/10.1016/j.cmet.2006.02.002CrossRefPubMedPubMedCentralGoogle Scholar
  65. Kiuru M, Busam KJ (2017) The NF1 gene in tumor syndromes and melanoma. Pathobiol Focus 97:146–157.  https://doi.org/10.1038/labinvest.2016.142CrossRefGoogle Scholar
  66. Koch A, Lang SA, Wild PJ et al (2015) Glucose transporter isoform 1 expression enhances metastasis of malignant melanoma cells. Oncotarget 6:32748–32760.  https://doi.org/10.18632/oncotarget.4977CrossRefPubMedPubMedCentralGoogle Scholar
  67. Kuk D, Shoushtari AN, Barker CA et al (2016) Prognosis of mucosal, uveal, acral, nonacral cutaneous, and unknown primary melanoma from the time of first metastasis. Oncologist 21:848–854.  https://doi.org/10.1634/theoncologist.2015-0522CrossRefPubMedPubMedCentralGoogle Scholar
  68. Kumar SM, Yu H, Edwards R et al (2007) Mutant V600E BRAF increases hypoxia inducible factor-1 a expression in melanoma. Cancer Res 67:3177–3185.  https://doi.org/10.1158/0008-5472.CAN-06-3312CrossRefGoogle Scholar
  69. Kuphal S, Winklmeier A, Warnecke C, Bosserhoff AK (2010) Constitutive HIF-1 activity in malignant melanoma. Eur J Cancer 46:1159–1169.  https://doi.org/10.1016/j.ejca.2010.01.031CrossRefGoogle Scholar
  70. Kvist A, Lao H, Cirenajwis H et al (2017) NF1 -mutated melanoma tumors harbor distinct clinical and biological characteristics. Mol Oncol 11:438–451.  https://doi.org/10.1002/1878-0261.12050CrossRefPubMedPubMedCentralGoogle Scholar
  71. Kwong LN, Davies MA (2013) Navigating the therapeutic complexity of PI3K pathway inhibition in melanoma. Clin Cancer Res 19:5310–5319.  https://doi.org/10.1158/1078-0432.CCR-13-0142CrossRefGoogle Scholar
  72. Lai K, Killingsworth MC, Lee CS (2015) Gene of the month: PIK3CA. J Clin Pathol 68:253–257.  https://doi.org/10.1136/jclinpath-2015-202885CrossRefGoogle Scholar
  73. Land SC, Tee AR (2007) Hypoxia-inducible factor 1α is regulated by the mammalian target of rapamycin (mTOR) via an mTOR signaling motif. J Biol Chem 282:20534–20543.  https://doi.org/10.1074/jbc.M611782200CrossRefGoogle Scholar
  74. Lawrence MS, Stojanov P, Polak P et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–218.  https://doi.org/10.1038/nature12213CrossRefPubMedPubMedCentralGoogle Scholar
  75. Lee J, Kefford R, Carlino M (2016) PD-1 and PD-L1 inhibitors in melanoma treatment: past success, present application and future challenges. Immunotherapy 8:733–746.  https://doi.org/10.2217/imt-2016-0022CrossRefGoogle Scholar
  76. Leonardi GC, Falzone L, Salemi R et al (2018) Cutaneous melanoma: from pathogenesis to therapy. Int J Oncol 52:1071–1080.  https://doi.org/10.3892/ijo.2018.4287CrossRefPubMedPubMedCentralGoogle Scholar
  77. Li J, Okino ST, Whitlock JP et al (2002) Regulation of GLUT1 gene transcription by the serine/threonine kinase Akt1. J Biol Chem 274:20281–20286.  https://doi.org/10.1074/jbc.274.29.20281CrossRefGoogle Scholar
  78. Li XX, Wang ZJ, Zheng Y et al (2018) Nuclear receptor Nur77 facilitates melanoma cell survival under metabolic stress by protecting fatty acid oxidation. Mol Cell 69:480–492.e7.  https://doi.org/10.1016/j.molcel.2018.01.001CrossRefGoogle Scholar
  79. Lin H, Wei S, Hurt EM et al (2018) Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade–mediated tumor regression. J Clin Invest 128:805–815.  https://doi.org/10.1172/jci96113CrossRefPubMedPubMedCentralGoogle Scholar
  80. Liu T, Jin L, Chen M et al (2019) Ku80 promotes melanoma growth and regulates antitumor effect of melatonin by targeting HIF1-α dependent PDK-1 signaling pathway. Redox Biol:101197.  https://doi.org/10.1016/j.redox.2019.101197CrossRefPubMedPubMedCentralGoogle Scholar
  81. Lo JA, Fisher DE (2014) The melanoma revolution: from UV carcinogenesis to a new era in therapeutics. Science 346:945–949.  https://doi.org/10.1126/science.1253735.TheCrossRefPubMedPubMedCentralGoogle Scholar
  82. Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 22:231–237.  https://doi.org/10.1016/j.coi.2010.01.009CrossRefGoogle Scholar
  83. Martin GA, Viskoohil D, Bollag G et al (1990) The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 63:843–849.  https://doi.org/10.1016/0092-8674(90)90150-DCrossRefGoogle Scholar
  84. Mcarthur GA, Ribas A (2012) Targeting oncogenic drivers and the immune system in melanoma. J Clin Oncol 31:499–506.  https://doi.org/10.1200/JCO.2012.45.5568CrossRefGoogle Scholar
  85. McCubrey JA, Steelman LS, Chappell WH et al (2015) Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance. Oncotarget 3:1068–1111.  https://doi.org/10.18632/oncotarget.659CrossRefGoogle Scholar
  86. McQuade JL, Vashisht Gopal Y (2015) Counteracting oxidative phosphorylation-mediated resistance of melanomas to MAPK pathway inhibition. Mol Cell Oncol 2:2–4.  https://doi.org/10.4161/23723556.2014.991610CrossRefGoogle Scholar
  87. Mendoza MC, Er EE, Blenis J (2011) The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci 36:320–328.  https://doi.org/10.1016/j.tibs.2011.03.006CrossRefPubMedPubMedCentralGoogle Scholar
  88. Mezrich JD, Fechner JH, Zhang X et al (2010) Hydrocarbon receptor can generate regulatory T. J Immunol 185:3190–3198.  https://doi.org/10.4049/jimmunol.0903670.ANCrossRefPubMedPubMedCentralGoogle Scholar
  89. Morgan RA, Dudley ME, Wunderlich JR et al (2006) Regression in patients after transfer of gentically engineered lymphocytes. Science 314:126–129.  https://doi.org/10.1016/j.jsbmb.2011.07.002.IdentificationCrossRefPubMedPubMedCentralGoogle Scholar
  90. Munn DH, Mellor AL (2007) Indoleamine 2,3-dioxy-genase and tumor-induced tolerance. J Clin Invest 117:1147–1154.  https://doi.org/10.1172/JCI31178CrossRefPubMedPubMedCentralGoogle Scholar
  91. Munn DH, Mellor AL, Regents G, Place F (2016) IDO in the tumor microenvironment: inflammation, counter- regulation and tolerance. Trends Immunol 37:193–207.  https://doi.org/10.1016/j.it.2016.01.002CrossRefPubMedPubMedCentralGoogle Scholar
  92. Muñoz-Couselo E, Adelantado EZ, Ortiz C et al (2017) NRAS-mutant melanoma: current challenges and future prospect. Onco Targets Ther 10:3941–3947.  https://doi.org/10.2147/OTT.S117121CrossRefPubMedPubMedCentralGoogle Scholar
  93. Nasi A, Fekete T, Krishnamurthy A et al (2013) Dendritic cell reprogramming by endogenously produced lactic acid. J Immunol 191:3090–3099.  https://doi.org/10.4049/jimmunol.1300772CrossRefPubMedPubMedCentralGoogle Scholar
  94. Nasti TH, Cochran JB, Tsuruta Y et al (2016) A murine model for the development of melanocytic nevi and their progression to melanoma. Mol Carcinog 55:646–658.  https://doi.org/10.1002/mc.22310CrossRefGoogle Scholar
  95. Naves LB, Almeida L, Ramakrishna S (2017) Understanding the microenvironment of melanoma cells for the development of target drug delivery systems. Eur Med J 5:85–92Google Scholar
  96. Nemoz C, Ropars V, Frit P et al (2018) XLF and APLF bind Ku80 at two remote sites to ensure DNA repair by non-homologous end joining. Nat Struct Mol Biol 25:971–980.  https://doi.org/10.1038/s41594-018-0133-6CrossRefPubMedPubMedCentralGoogle Scholar
  97. Nissan MH, Pratilas CA, Jones AM et al (2014) Loss of NF1 in Cutaneous Melanoma is associated with RAS activation and MEK dependence. Cancer Res 74:2340–2351.  https://doi.org/10.1158/0008-5472.CAN-13-2625CrossRefPubMedPubMedCentralGoogle Scholar
  98. Nussenzweig MC (2010) Origin and development of dendritic cells. Immunol Rev 234:45–54.  https://doi.org/10.1111/j.0105-2896.2009.00879.xCrossRefGoogle Scholar
  99. Ohta A (2016) A metabolic immune checkpoint: adenosine in tumor microenvironment. Front Immunol 7:1–11.  https://doi.org/10.3389/fimmu.2016.00109CrossRefGoogle Scholar
  100. Ohta A, Sitkovsky M (2014) Extracellular adenosine-mediated modulation of regulatory T cells. Front Immunol 5:1–9.  https://doi.org/10.3389/fimmu.2014.00304CrossRefGoogle Scholar
  101. Ott PA, Henry T, Baranda SJ et al (2013) Inhibition of both BRAF and MEK in BRAFV600Emutant melanoma restores compromised dendritic cell (DC) function while having differential direct effects on DC properties. Cancer Immunol Immunother 62:811–822.  https://doi.org/10.1007/s00262-012-1389-zCrossRefGoogle Scholar
  102. Palmer SR, Erickson LA, Ichetovkin I et al (2011) Circulating serologic and molecular biomarkers in malignant melanoma. Mayo Clin Proc 86:981–990.  https://doi.org/10.4065/mcp.2011.0287CrossRefPubMedPubMedCentralGoogle Scholar
  103. Papandreou I, Cairns RA, Fontana L et al (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3:187–197.  https://doi.org/10.1016/j.cmet.2006.01.012CrossRefGoogle Scholar
  104. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264.  https://doi.org/10.1038/nrc3239CrossRefPubMedPubMedCentralGoogle Scholar
  105. Parmenter TJ, Kleinschmidt M, Kinross KM et al (2014) Response of BRAF mutant melanoma to BRAF inhibition is mediated by a network of transcriptional regulators of glycolysis. Cancer Discov 43:1983–1987.  https://doi.org/10.1158/2159-8290.CD-13-0440CrossRefGoogle Scholar
  106. Passarelli A, Mannavola F, Stucci LS et al (2017) Immune system and melanoma biology: a balance between immunosurveillance and immune escape. Oncotarget 8:106132–106142.  https://doi.org/10.18632/oncotarget.22190CrossRefPubMedPubMedCentralGoogle Scholar
  107. Pathria P, Louis TL, Varner JA (2019) Targeting tumor-associated macrophages in Cancer. Trends Immunol 40:310–327.  https://doi.org/10.1016/j.it.2019.02.003CrossRefGoogle Scholar
  108. Patsoukis N, Bardhan K, Chatterjee P et al (2015) PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun 6:6692.  https://doi.org/10.1038/ncomms7692CrossRefPubMedPubMedCentralGoogle Scholar
  109. Payen VL, Porporato PE, Baselet B, Sonveaux P (2016) Metabolic changes associated with tumor metastasis, part 1: tumor pH, glycolysis and the pentose phosphate pathway. Cell Mol Life Sci 73:1333–1348.  https://doi.org/10.1007/s00018-015-2098-5CrossRefGoogle Scholar
  110. Picco ME, Castro MV, Quezada MJ et al (2019) STAT3 enhances the constitutive activity of AGC kinases in melanoma by transactivating PDK1. Cell Biosci 9:1–14.  https://doi.org/10.1186/s13578-018-0265-8CrossRefGoogle Scholar
  111. Pickarski M, Gleason A, Bednar B, Duong LT (2015) Orally active αvβ3 integrin inhibitor MK-0429 reduces melanoma metastasis. Oncol Rep 33:2737–2745.  https://doi.org/10.3892/or.2015.3910CrossRefPubMedPubMedCentralGoogle Scholar
  112. Pinheiro C, Miranda-Gonçalves V, Longatto-Filho A et al (2016) The metabolic microenvironment of melanomas : prognostic value of MCT1 and MCT4. Cell Cycle 15:1462–1470.  https://doi.org/10.1080/15384101.2016.1175258CrossRefPubMedPubMedCentralGoogle Scholar
  113. Pollock PMÃ, Walker GJ, Glendening JM (2002) PTEN inactivation is rare in melanoma tumours but occurs frequently in melanoma cell lines. Melanoma Res 12:565–575CrossRefGoogle Scholar
  114. Pollock PM, Harper UL, Hansen KS et al (2003) High frequency of BRAF mutations in nevi. Nat Genet 33:19–20.  https://doi.org/10.1038/ng1054CrossRefGoogle Scholar
  115. Porta C, Paglino C, Mosca A (2014) Targeting PI3K/Akt/mTOR signaling in Cancer. Front Oncol 4:1–11.  https://doi.org/10.3389/fonc.2014.00064CrossRefGoogle Scholar
  116. Potrony M, Badenas C, Aguilera P et al (2015) Update in genetic susceptibility in melanoma. Ann Transl Med 3:210.  https://doi.org/10.3978/j.issn.2305-5839.2015.08.11CrossRefPubMedPubMedCentralGoogle Scholar
  117. Ratner N, Miller SJ (2015) A RASopathy gene commonly mutated in cancer: the neurofibromatosis type 1 tumour suppressor. Nat Rev Cancer 15:290–301.  https://doi.org/10.1038/nrc3911CrossRefPubMedPubMedCentralGoogle Scholar
  118. Richmond A, Yang J, Su Y (2009) The good and the bad of chemokines/chemokine receptors in melanoma. Pigment Cell Melanoma Res 22:175–186.  https://doi.org/10.1111/j.1755-148X.2009.00554.xCrossRefPubMedPubMedCentralGoogle Scholar
  119. Robbins PF, Kassim SH, Tran TLN et al (2015) A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin Cancer Res 21:1019–1027.  https://doi.org/10.1158/1078-0432.CCR-14-2708CrossRefGoogle Scholar
  120. Rofstad EK, Mathiesen B, Kindem K, Galappathi K (2006) Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res 66:6699–6707.  https://doi.org/10.1158/0008-5472.CAN-06-0983CrossRefGoogle Scholar
  121. Romero-Garcia S, Moreno-Altamirano MMB, Prado-Garcia H, Sánchez-García FJ (2016) Lactate contribution to the tumor microenvironment: mechanisms, effects on immune cells and therapeutic relevance. Front Immunol 7:52.  https://doi.org/10.3389/fimmu.2016.00052CrossRefPubMedPubMedCentralGoogle Scholar
  122. Scortegagna M, Lau E, Zhang T et al (2015) PDK1 and SGK3 contribute to the growth of BRAF-mutant melanomas and are potential therapeutic targets. Cancer Res 75:1399–1412.  https://doi.org/10.1158/0008-5472.CAN-14-2785CrossRefPubMedPubMedCentralGoogle Scholar
  123. Scott KEN, Cleveland JL (2016) Lactate wreaks havoc on tumor-infiltrating T and NK cells. Cell Metab 24:649–650.  https://doi.org/10.1016/j.cmet.2016.10.015CrossRefGoogle Scholar
  124. Scott DA, Richardson AD, Filipp FV et al (2011) Comparative metabolic flux profiling of melanoma cell lines. J Biol Chem 286:42626–42634.  https://doi.org/10.1074/jbc.m111.282046CrossRefPubMedPubMedCentralGoogle Scholar
  125. Seidel JA, Otsuka A, Kabashima K (2018) Anti-PD-1 and anti-CTLA-4 therapies in Cancer: mechanisms of action, efficacy, and limitations. Front Oncol 8:1–14.  https://doi.org/10.3389/fonc.2018.00086CrossRefGoogle Scholar
  126. Sensi M, Nicolini G, Petti C et al (2006) Mutually exclusive NRASQ61R and BRAFV600E mutations at the single-cell level in the same human melanoma. Oncogene 25:3357–3364.  https://doi.org/10.1038/sj.onc.1209379CrossRefGoogle Scholar
  127. Shah DJ, Dronca RS (2015) Latest advances in chemotherapeutic, targeted and immune approaches in the treatment of metastatic melanoma. Mayo Clin Proc 89:504–519.  https://doi.org/10.1016/j.mayocp.2014.02.002.LatestCrossRefGoogle Scholar
  128. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69:7–34.  https://doi.org/10.3322/caac.21551CrossRefPubMedGoogle Scholar
  129. Sitkovsky MV, Lukashev D, Apasov S et al (2004) Physiological control of immune response and inflammatory tissue damage by hypoxia -inducible factors and adenosine A2A receptors. Annu Rev Immunol 22:657–682.  https://doi.org/10.1146/annurev.immunol.22.012703.104731CrossRefGoogle Scholar
  130. Slominski A, Kim T-K, Brożyna AA et al (2014) The role of melanogenesis in regulation of melanoma behavior: melanogenesis leads to stimulation of HIF-1α expression and HIF-dependent attendant pathways. Arch Biochem Biophys 563:79–93.  https://doi.org/10.1016/j.abb.2014.06.030CrossRefPubMedPubMedCentralGoogle Scholar
  131. Smith JW, Ratnikov BI, Ronai ZA et al (2016) Metabolic rewiring in melanoma. Oncogene 36:147–157.  https://doi.org/10.1038/onc.2016.198CrossRefPubMedPubMedCentralGoogle Scholar
  132. Sonveaux P, Copetti T, de Saedeleer CJ et al (2012) Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PLoS One 7:e33418.  https://doi.org/10.1371/journal.pone.0033418CrossRefPubMedPubMedCentralGoogle Scholar
  133. Sosman JA, Kim KB, Schuchter L et al (2012) Survival in BRAF V600–mutant advanced melanoma treated with Vemurafenib. N Engl J Med 366:707–714.  https://doi.org/10.1056/NEJMoa1112302CrossRefPubMedPubMedCentralGoogle Scholar
  134. Stewart AA, Dudley ME, Nath A et al (2013) Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother 36:133–151.  https://doi.org/10.1097/cji.0b013e3182829903CrossRefPubMedPubMedCentralGoogle Scholar
  135. Stine ZE, Walton ZE, Altman BJ et al (2016) MYC, metabolism, and Cancer. Cancer Discov 5:1024–1039.  https://doi.org/10.1158/2159-8290.CD-15-0507.MYCCrossRefGoogle Scholar
  136. Stock C, Gassner B, Hauck CR et al (2005) Migration of human melanoma cells depends on extracellular pH and Na+/H+ exchange. J Physiol 1:225–238.  https://doi.org/10.1113/jphysiol.2005.088344CrossRefGoogle Scholar
  137. Tau G, Rothman P (1999) Biologic functions of the IFN-γ receptors. Allergy 54:1233–1251.  https://doi.org/10.1034/j.1398-9995.1999.00099.xCrossRefPubMedPubMedCentralGoogle Scholar
  138. The Cancer Genome Atlas Network (2015) Genomic classification of cutaneous melanoma. Cell 161:1681–1696.  https://doi.org/10.1007/s11065-015-9294-9.FunctionalCrossRefPubMedPubMedCentralGoogle Scholar
  139. Tobin DJ (2017) Introduction to skin aging. J Tissue Viability 26:37–46.  https://doi.org/10.1016/j.jtv.2016.03.002CrossRefPubMedGoogle Scholar
  140. Tucci M, Stucci S, Passarelli A et al (2014) The immune escape in melanoma: role of the impaired dendritic cell function. Expert Rev Clin Immunol 10:1395–1404.  https://doi.org/10.1586/1744666X.2014.955851CrossRefGoogle Scholar
  141. Umansky V, Shevchenko I, Bazhin AV, Utikal J (2014) Extracellular adenosine metabolism in immune cells in melanoma. Cancer Immunol Immunother 63:1073–1080.  https://doi.org/10.1007/s00262-014-1553-8CrossRefGoogle Scholar
  142. Van Allen EM, Wagle N, Sucker A et al (2014) The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov 4:94–109.  https://doi.org/10.1158/2159-8290.CD-13-0617CrossRefPubMedPubMedCentralGoogle Scholar
  143. Vara JÁF, Casado E, de Castro J et al (2004) PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 30:193–204.  https://doi.org/10.1016/j.ctrv.2003.07.007CrossRefGoogle Scholar
  144. Vazquez F, Lim JH, Chim H et al (2013) PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell 23:287–301.  https://doi.org/10.1016/j.ccr.2012.11.020CrossRefPubMedPubMedCentralGoogle Scholar
  145. Vredeveld LCW, Possik PA, Smit MA et al (2012) Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis. Genes Dev 26:1055–1069.  https://doi.org/10.1101/gad.187252.112CrossRefPubMedPubMedCentralGoogle Scholar
  146. Walunas TL, Christina YB, Bluestone JA (1996) CTLA-4 ligation blocks CD28-dependent T cell activation. J Exp Med 183:2541–2550.  https://doi.org/10.1084/jem.193.6.2541CrossRefGoogle Scholar
  147. Wang L, Leite de Oliveira R, Huijberts S et al (2018) An acquired vulnerability of drug-resistant melanoma with therapeutic potential. Cell 173:1413–1425.  https://doi.org/10.1016/j.cell.2018.04.012CrossRefGoogle Scholar
  148. Weinstein D, Leininger J, Hamby C, Safai B (2014) Diagnostic and prognostic biomarkers in melanoma. J Clin Aesthet Dermatol 7:13–24PubMedPubMedCentralGoogle Scholar
  149. Weir HK, Marrett LD, Cokkinides V et al (2011) Melanoma in adolescents and young adults (ages 15–39 years): United States, 1999–2006. J Am Acad Dermatol 65:S38.e1–S38.e13.  https://doi.org/10.1016/j.jaad.2011.04.038CrossRefGoogle Scholar
  150. Weller RB, Castellsague X (2017) Skin Cancer: epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches. Dermatol Ther 7:5–19.  https://doi.org/10.1007/s13555-016-0165-yCrossRefGoogle Scholar
  151. Whiteman DC, Green AC, Olsen CM (2016) The growing burden of invasive melanoma : projections of incidence rates and numbers of new cases in six susceptible populations through 2031. J Invest Dermatol 136:1161–1171.  https://doi.org/10.1016/j.jid.2016.01.035CrossRefGoogle Scholar
  152. Wolchok JD, Neyns B, Linette G et al (2010) Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol 11:155–164.  https://doi.org/10.1016/S1470-2045(09)70334-1CrossRefGoogle Scholar
  153. Yan S, Coffing BN, Li Z et al (2016) Diagnostic and prognostic value of ProEx C and GLUT1 in melanocytic lesions. Anticancer Res 36:2871–2880CrossRefGoogle Scholar
  154. Zaal EA, Berkers CR (2018) The influence of metabolism on drug response in Cancer. Front Oncol 8:1–15.  https://doi.org/10.3389/fonc.2018.00500CrossRefGoogle Scholar
  155. Zeller KI, Jegga AG, Aronow BJ et al (2003) An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets. Genome Biol 4:R69.  https://doi.org/10.1186/gb-2003-4-10-r69CrossRefPubMedPubMedCentralGoogle Scholar
  156. Zhang W, Liu HT (2006) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12:9–18.  https://doi.org/10.1038/sj.cr.7290105CrossRefGoogle Scholar
  157. Zhang M, Di Martino JS, Bowman RL et al (2018) Adipocyte-derived lipids mediate melanoma progression via FATP proteins. Cancer Discov 8:1006–1025.  https://doi.org/10.1158/2159-8290.CD-17-1371CrossRefPubMedPubMedCentralGoogle Scholar
  158. Zhou X, Gimm O, Hampel H et al (2000) Epigenetic PTEN silencing in malignant melanomas without PTEN mutation. Am J Pathol 157:1123–1128.  https://doi.org/10.1016/S0002-9440(10)64627-5CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Rafael Luís
    • 1
  • Cheila Brito
    • 1
  • Marta Pojo
    • 1
  1. 1.Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.ELisbonPortugal

Personalised recommendations