Advertisement

Interaction Between Copperoxide Nanoparticles and Plants: Uptake, Accumulation and Phytotoxicity

  • Abreeq Fatima
  • Shikha Singh
  • Sheo Mohan Prasad
Chapter
  • 32 Downloads
Part of the Sustainable Agriculture Reviews book series (SARV, volume 41)

Abstract

A natural question arose when scientists and engineers began formulating and using nanoparticles (NPs): “Why are they so interesting? Why are studies of these extremely small entities are so fascinating, and why are they so challenging to handle as well as to synthesize?” The unique property possessed by all nanoparticles is where the answer lies. The term nano is adapted from the Greek word ‘dwarf’ and denotes 10−9 when used as a prefix. The use of nanoparticles (NPs) extends their potential into agricultural soils and indeed the formulations of NPs may be developed to improve nutrient and quality of crops. The rapid development of synthesized nanoparticles combined with their potential risks to public health and the environment has raised considerable concerns. A significant aspect regarding risk assessment of NPs is understanding the interaction between plants and NPs. Plants, which are fundamental components of all ecosystems, play an important role in fate and transport of NPs in the environment through uptake and bioaccumulation. The degree of accumulation of nanoparticles by plants depends on physicochemical characteristics such as shape, size, agglomeration state, chemical composition and others. Since, copper is an essential micronutrient for plants and play important role in the activation of several enzymes such as cytochrome c oxidase, superoxide dismutase, ascorbate oxidase, amine oxidase etc. and as electron transport carriers in plants i.e. plastocyanin (Sekine R, Marzouk ER, Khaksar M, Scheckel KG, Stegemeier JP, Lowry GV, Donner E, Lombi E, J Environ Qual, 46(6):1198–1205, 2017). This chapter discusses the nature of copperoxide nanoparticles (CuO NPs), their uptake and translocation mechanisms, and their toxic effects on different plant species at both physiological and cellular levels. This chapter also addresses tolerance mechanisms generated by plants and a critical assessment of the necessity for further research.

Keywords

Copper oxide nanoparticle (CuO NPs) Phytotoxicity Tolerance 

References

  1. Abdul Hameed M, Al-Samarrai (2012) Nanoparticles as alternative to pesticides in management plant diseases-a review. Int J Sci Res Publ 2(4):1–4Google Scholar
  2. Ahmad Z, Vargas-Reus MA, Bakhshi R, Ryan F, Ren GG, Oktar F, Allaker RP (2012) Antimicrobial properties of electrically formed elastomeric polyurethane-copper oxide nanocomposites for medical and dental applications. Methods Enzymol 509:87–99PubMedCrossRefPubMedCentralGoogle Scholar
  3. Almeida E, Diamantino TC, de Sousa O (2007) Marine paints: the particular case of antifouling paints. Prog Org Coat 59:2–20CrossRefGoogle Scholar
  4. Anjum NA, Singh HP, Khan MI, Masood A, Per TS, Negi A, Batish DR, Khan NA, Duarte AC, Pereira E, Ahmad I (2015) Too much is bad-an appraisal of phytotoxic¬ity of elevated plant-beneficial heavy metal ions. Environ Sci Pollut Res 22:3361–3382CrossRefGoogle Scholar
  5. Arif N, Yadav V, Singh S, Tripathi DK, Dubey NK, Chauhan DK, Giorgetti L (2018) Interaction of Copper Oxide nanoparticles with plants: uptake, accumulation, and toxicity. nanomaterials in plants, algae, and microorganisms. Elsevier.  https://doi.org/10.1016/B978-0-12-811487-2.00013-XCrossRefGoogle Scholar
  6. Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook R, Jaruga DP, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46:1819–1827PubMedPubMedCentralCrossRefGoogle Scholar
  7. Ben-Sasson M, Zodrow KR, Genggeng Q, Kang Y, Giannelis EP, Elimelech M (2014) Surface functionalization of thin-film composite membranes with copper nanoparticles for antimicrobial surface properties. Environ Sci Technol 48:384–393PubMedCrossRefPubMedCentralGoogle Scholar
  8. Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry and molecular biology of plants, vol 40. American Society of Plant Physiologists, Rockville, p 1367Google Scholar
  9. Cabiscol E, Tamarit J, Ros J (2010) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3(1):3–8Google Scholar
  10. Chang YN, Zhang M, Xia L, Zhang J, Xing G (2012) The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 5(12):2850–2871PubMedCentralCrossRefGoogle Scholar
  11. Chaoui A, Jarrar B, El Ferjani E (2004) Effect of cadmium and copper on peroxidase, NADH oxidase and IAA oxidase activities in cell wall, soluble and microsomal membrane fractions of pea roots. J Plant Physiol 161(11):1225–1234PubMedCrossRefPubMedCentralGoogle Scholar
  12. Chibber S, Ansari SA, Satar R (2013) New vision to CuO, ZnO, and TiO2 nanoparticles: their outcome and effects. J Nanopart Res 15:1–13CrossRefGoogle Scholar
  13. Cioffi N, Ditaranto N, Torsi L, Picca RA, Giglio ED, Zambonin PG (2005) Synthesis, analytical characterization and bioactivity of Ag and Cu nanoparticles embedded in poly-vinyl-methyl-ketone films. Anal Bioanal Chem 382:1912PubMedCrossRefPubMedCentralGoogle Scholar
  14. Clemens S, Palmgren MG, Kraemer U (2002) A long way ahead: understanding and engineering plant metal accumualtion. Trends Plant Sci 7:309–315PubMedCrossRefPubMedCentralGoogle Scholar
  15. Costa MVJD, Sharma PK (2016) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54:110–119CrossRefGoogle Scholar
  16. Da Silva LC, Oliva MA, Azevedo AA, De Araujo JM (2006) Responses of resting plant species to pollution from an iron pelletization factory. Water Air Soil Pollut 175:241–256CrossRefGoogle Scholar
  17. Dankovich TA, Smith JA (2014) Incorporation of copper nanoparticles into paper for point-of use water purification. Water Res 63:245–251PubMedPubMedCentralCrossRefGoogle Scholar
  18. Deng F, Wang S, Xin H (2016) Toxicity of CuO nanoparticles to structure and metabolic activity of Allium cepa root tips. Bull Environ Contam Toxicol 97:702–708PubMedCrossRefPubMedCentralGoogle Scholar
  19. Dietz KJ, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16(11):582–589PubMedCrossRefPubMedCentralGoogle Scholar
  20. Dimkpa CO, Calder A, Britt DW, McLean JE, Anderson AJ (2011) Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions. Environ Pollut 159:1749–1756PubMedCrossRefPubMedCentralGoogle Scholar
  21. Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) Cuo and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1–15CrossRefGoogle Scholar
  22. Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13(4):822–828CrossRefGoogle Scholar
  23. Du W, Tan W, Peralta-Videa JR, Gardea-Torresdey JL, Ji R, Yin Y, Guo H (2017) Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiol Biochem 110:210–225PubMedCrossRefPubMedCentralGoogle Scholar
  24. Du W, Tan W, Yin Y, Ji R, Peralta-Videa JR, Guo H, Gardea-Torresdey JL (2018) Differential effects of copper nanoparticles/microparticles in agronomic and physiological parameters of oregano (Origanum vulgare). Sci Tot Environ 618:306–312CrossRefGoogle Scholar
  25. Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiolgea Plantarum 134:151–160CrossRefGoogle Scholar
  26. Evans P, Matsunaga H, Kiguchi M (2008) Large-scale application of nanotechnology for wood protection. Nat Nanotechnol 3:577PubMedCrossRefPubMedCentralGoogle Scholar
  27. Faheem I, Sammia S, Shakeel AK et al (2016) Green synthesis of copper oxide nanoparticles using Abutilon indicum leaf extract: antimicrobial, antioxidant and photocatalytic dye degradation activities. Trop J Pharm Res 16:743–753Google Scholar
  28. Federici G, Shaw BJ, Handy RD (2007) Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 84(4):415–430PubMedCrossRefPubMedCentralGoogle Scholar
  29. Fleischer MA, Neill O, Ehwald R (1999) The pore size of non-graminaceous plant cell wall is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturon II. Plant Physiol 121:829–838PubMedPubMedCentralCrossRefGoogle Scholar
  30. Gardea-Torresdey JL, Peralta-Videa JR, Montes M, De la Rosa G, Corral-Diaz B (2004) Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.: impact on plant growth and uptake of nutritional elements. Bioresour Technol 92(3):229–235PubMedCrossRefPubMedCentralGoogle Scholar
  31. Gunalan S, Sivaraj R, Venckatesh R (2012) Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: optical properties. Spectrochim Acta A Mol Biomol Spectrosc 97:1140–1144PubMedCrossRefPubMedCentralGoogle Scholar
  32. Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266PubMedCrossRefPubMedCentralGoogle Scholar
  33. Hawthorne J, Musante C, Sinha SK, White JC (2012) Accumulation and phytotoxicity of engineered nanoparticles to Cucurbita pepo. Int J Phytoremediation 1:429–442CrossRefGoogle Scholar
  34. Honary S, Barabadi H, Fathabad EG, Naghibi F (2012) Green synthesis of copper oxide nanoparticles using penicilliumaurantiogriseum, penicilliumcitrinum and penicilliumwakasmanii. Dig J Nanomater Biostruct 7:999–1005Google Scholar
  35. Hong J, Rico CM, Zhao L, Adeleye AS, Keller AA, Peralta-Videa JR, Gardea-Torresdey JL (2015) Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ Sci Processes and Impacts 17:177–185CrossRefGoogle Scholar
  36. Hosseini – Koupaei M, Shareghi B, Saboury AA, Davar F, Sirotkin VA, Hosseini-Koupaei MH, Enteshari Z (2019) Catalytic activity, structure and stability of proteinase K in the presence of biosynthesized CuO nanoparticles. Int J Biol Macromol 122:732–744PubMedCrossRefPubMedCentralGoogle Scholar
  37. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638–2650CrossRefGoogle Scholar
  38. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385–406PubMedPubMedCentralGoogle Scholar
  39. Ivask A, Bondarenko O, Jepihhina N, Kahru A (2010) Profiling of the reactive oxygen species related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals. Anal Bioanal Chem 398:701–716PubMedCrossRefPubMedCentralGoogle Scholar
  40. Jia G, Wang H, Yan L, Wang X, Pei R, Yan T (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383PubMedCrossRefPubMedCentralGoogle Scholar
  41. Joo JH, Bae YS, Lee JS (2001) Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol 126:1055–1060PubMedPubMedCentralCrossRefGoogle Scholar
  42. Kahru A, Dubourguier HC (2010) From ecotoxicology to nano ecotoxicology. Toxicology 269:105–119PubMedCrossRefGoogle Scholar
  43. Kalska-Szostko B (2011) Electrochemical methods in nanomaterials preparation. Recent Trend Electrochem Sci Technol.  https://doi.org/10.5772/33662Google Scholar
  44. Karlsson HL, Cronholm P, Gustafsson J, Moller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21(9):1726–1732PubMedCrossRefGoogle Scholar
  45. Kasana RC, Panwar NR, Kaul RK, Kumar P (2017) Biosynthesis and effects of copper nanoparticles on plants. Environ Chem Lett 15:233–240CrossRefGoogle Scholar
  46. Keller AA, Adeleye AS, Conway JR, Garner KL, Zhao L, Cherr GN et al (2017) Comparative environmental fate and toxicity of copper nanomaterials. NanoImpact 7:28–40CrossRefGoogle Scholar
  47. Knox JP (1995) The extra cellular-matrix in higher-plants. 4. Developmentally-regulated proteoglycans and glycoproteins of the plant-cell surface. FASEB J 9:1004–1012PubMedCrossRefPubMedCentralGoogle Scholar
  48. Krumov N, Nochta IP, Oder SV, Gotcheva A, Posten AC (2009) Production of inorganic nanoparticles by microorganisms. Chem Eng Technol 32(7):1026–1035CrossRefGoogle Scholar
  49. Kulkarni V, Kulkarni P (2013) Green synthesis of copper nanoparticles using Ocimum Sanctum leaf extract. Int J Chem Stud 1(3):1–4Google Scholar
  50. Kulkarni N, Muddapur U (2014) Biosynthesis of metal nanoparticles: a review. J Nanotechnol.  https://doi.org/10.1155/2014/510246CrossRefGoogle Scholar
  51. Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J et al (2010) Uptake and distribution of ultrasmallanatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10:2296–2302PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. Eur Mol Biol Org J 22:2623–2633CrossRefGoogle Scholar
  53. Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticumaestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921PubMedPubMedCentralCrossRefGoogle Scholar
  54. Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675PubMedCrossRefPubMedCentralGoogle Scholar
  55. Lee HJ, Lee G, Jang NR, Yun JM, Song JY, Kim BS (2011) Biological synthesis of copper nanoparticles using plant extract. Nanotechnology 1:371–374Google Scholar
  56. Lidon FC, Henriques FS (1998) Role of rice shoot vacuoles in copper toxicity regulation. Environ Exp Bot 39:197–202CrossRefGoogle Scholar
  57. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250PubMedPubMedCentralCrossRefGoogle Scholar
  58. Long D, Wu G, Chen S (2007) Preparation of oligochitosan stabilized silver nanoparticles by gamma irradiation. Rad Phys Chem 76:1126–1131CrossRefGoogle Scholar
  59. MacFarlane GR, Burchett MD (2000) Cellular distribution of copper, lead and zinc in the grey mangrove, Avicennia marina (Forsk.) Vierh. Aquat Bot 68:45–59CrossRefGoogle Scholar
  60. Mafuné F, Kohno J, Takeda Y, Kondow T, Sawabe H (2000) Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J Phys Chem B 104(35):8333–8337Google Scholar
  61. Majumder DR (2012) Bioremediation: copper nanoparticles from electronic-waste. Int J Eng Sci Technol 4:4380–4389Google Scholar
  62. Marcia R, Salvadori LF, Lepre AR, Oller do Nascimento CA (2013) Biosynthesis and uptake of copper nanoparticles by dead biomass of Hypocrealixiiisolated from the metal mine in the Brazilian Amazon region. PLoS One 8(11):1–8Google Scholar
  63. Mishra V, Mishra RK, Dikshit A, Pandey AC (2014) Interactions of nanoparticles with plants: an emerging prospective in the agriculture industry. Emerging Technologies and Management of Crop Stress Tolerance 1:159–180CrossRefGoogle Scholar
  64. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410PubMedCrossRefPubMedCentralGoogle Scholar
  65. Moon YS, Park ES, Kim TO, Lee HS, Lee SE (2014) SELDI-TOF MS-based discovery of a biomarker in Cucumis sativus seeds exposed to CuO nanoparticles. Environ Toxicol Pharmacol 38:922–931PubMedCrossRefPubMedCentralGoogle Scholar
  66. Mortimer M, Kasemets K, Kahru A (2010) Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophile. Toxicology 269:182–189PubMedCrossRefPubMedCentralGoogle Scholar
  67. Musante C, White JC (2012) Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environ Toxicol 27(9):510–517PubMedCrossRefPubMedCentralGoogle Scholar
  68. Nair PMG, Chung IM (2015) Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard (Brassica juncea L.). Ecotoxicol Environ Saf 113:302–313PubMedCrossRefPubMedCentralGoogle Scholar
  69. Nasrollahzadeh M, Sajjadi M, Dasmeh HR, Sajadi SM (2018) Green synthesis of the Cu/sodium borosilicate nanocomposite and investigation of its catalytic activity. J Alloys Compd 763:1024–1034CrossRefGoogle Scholar
  70. Nekrasova GF, Ushakova OS, Ermakov AE, Uimin MA (2011) Effects of copper (II) ions and copper oxide nanoparticles on Elodea densa planch. Russ J Ecol 42:458–463CrossRefGoogle Scholar
  71. Nikhil J, Zhong LW, Tapan KS, Tarasankar P (2000) Seed mediated growth method to prepare cubic copper nanoparticles. Curr Sci 79:1367Google Scholar
  72. Ovecka M, Lang I, Baluska F, Ismail A, Illes P, Lichtscheidl IK (2005) Endocytosis and vesicle trafficking during tip growth of root hairs. Protoplasma 226:39–54PubMedPubMedCentralCrossRefGoogle Scholar
  73. Panigrah S, Kundu S, Ghosh SK, Nath S, Praharaj S, Soumen B, Pal T (2006) Cysteine functionalized copper organosol: synthesis, characterization and catalytic application. Polyhydron 25:1263CrossRefGoogle Scholar
  74. Pelletier DA, Suresh AK, Holton GA et al (2010) Effects of engineered cerium oxide nanoparticles on bacterial growth and viability. Appl Environ Microbiol 76(24):7981–7989PubMedPubMedCentralCrossRefGoogle Scholar
  75. Perreault F, Oukarroum A, Melegari SP, Matias WG, Popovic R (2012) Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonasreinhardtii. Chemosphere 87:1388–1394PubMedCrossRefPubMedCentralGoogle Scholar
  76. Perreault F, Samadani M, Dewez D (2014) Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemna gibba L. Nanotoxicology 8:374–382PubMedCrossRefPubMedCentralGoogle Scholar
  77. Rafique M, Shaikh AJ, Rasheed R, Tahir MB, Bakhat HF, Rafique MS, Rabbani F (2017) A review on synthesis, characterization and applications of copper nanoparticles using green method. Nanotechnology 12(04):1750043Google Scholar
  78. Rahman A, Ismail A, Jumbianti D, Magdalena S, Sudrajat H (2009) Synthesis of copper oxide nanoparticles by using Phormidium cyanobacterium. Indones J Chem 9:355–360CrossRefGoogle Scholar
  79. Rajput VD, Chen Y, Ayup M (2015) Effects of high salinity on physiological and anatomical indices in the early stages of Populuseuphratica growth. Russ J Plant Physiol 62:229–236CrossRefGoogle Scholar
  80. Rajput V, Minkina T, Fedorenko A, Sushkova S, Mandzhieva S, Lysenko V, Duplii N, Fedorenko G, Dvadnenko K, Ghazaryan K (2018) Toxicity of copper oxide nanoparticles on spring barley (Hordeumsativum distichum). Sci Total Environ 645:1103–1113PubMedCrossRefPubMedCentralGoogle Scholar
  81. Ramesh AV, Devi SR, Botsa SM, Basavaiah K (2018) Facile green synthesis of Fe3O4 nanoparticles using aqueous leaf extract of Zanthoxylum armatum DC. for efficient adsorption of methylene blue. J Asian Ceramic Soc 6:145–155CrossRefGoogle Scholar
  82. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498PubMedPubMedCentralCrossRefGoogle Scholar
  83. Sahayaraj K, Rajesh S (2011) Bionanoparticles: synthesis and antimicrobial applications. In: Mendez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances. Research Center, Badajoz, pp 228–244Google Scholar
  84. Sekine R, Marzouk ER, Khaksar M, Scheckel KG, Stegemeier JP, Lowry GV, Donner E, Lombi E (2017) Aging of dissolved copper and copper-based nanoparticles in five different soils: short-term kinetics vs. long-term fate. J Environ Qual 46(6):1198–1205.  https://doi.org/10.2134/jeq2016.12.0485CrossRefPubMedPubMedCentralGoogle Scholar
  85. Shams M, Yildirim E, Agar G, Ercisli S, Dursun A, Ekinci M, Kul R (2018) Nitric oxide alleviates copper toxicity in germinating seed and seedling growth of Lactuca sativa L. Notulae Botanicae Horti Agrobotanici 46(1):167–172CrossRefGoogle Scholar
  86. Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93:906–915PubMedCrossRefPubMedCentralGoogle Scholar
  87. Shaw AK, Ghosh S, Kalaji HM, Bosa K, Brestic M, Zivcak M et al (2014) Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.). Environ Exp Bot 102:37–47CrossRefGoogle Scholar
  88. Singh D, Kumar A (2016) Impact of irrigation using water containing CuO and ZnO nanoparticles on Spinach oleracea grown in soil media. Bull Environ Contam Toxicol 97:548–553PubMedCrossRefPubMedCentralGoogle Scholar
  89. Singh VP, Singh S, Kumar J, Prasad SM (2015) Investigating the roles of ascorbate-glutathione cycle and thiol metabolism in arsenate tolerance in ridged Luffa seedlings. Protoplasma 252(5):1217–1229PubMedCrossRefPubMedCentralGoogle Scholar
  90. Singh S, Vishwakarma K, Singh S, Sharma S, Dubey NK, Singh VK, Liu S, Tripathi DK, Chauhan DK (2017) Understanding the plant and nanoparticle interface at transcriptomic and proteomic level: a concentric overview. Plant Gene 11:265–272CrossRefGoogle Scholar
  91. Stampoulis D, Sinha SK, White JC (2009) Assay dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479PubMedCrossRefPubMedCentralGoogle Scholar
  92. Sundaramurthy N, Parthiban C (2015) Biosynthesis of copper oxide nanoparticles using pyruspyrifolia leaf extract and evolve the catalytic activity. Int Res J Eng Technol 2:332–338Google Scholar
  93. Tanori J, Pileni MP (1997) Control of the shape of copper metallic particles by using a colloidal system as template. Langmuir 13(4):639–646CrossRefGoogle Scholar
  94. Tang Y, He R, Zhao J, Nie G, Xu L, Xing B (2016) Oxidative stress induced toxicity of CuO nanoparticles and related toxicogenomic responses in Arabidopsis thaliana. Environ Pollut 212:605–614PubMedCrossRefPubMedCentralGoogle Scholar
  95. Tariq M, Hameed S, Yasmeen T, Zahid M, Zafar M (2014) Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.). World J Microbiol Biotechnol 30(2):719–725PubMedCrossRefPubMedCentralGoogle Scholar
  96. Thul ST, Sarangi BK (2015) Implications of nanotechnology on plant productivity and its rhizospheric environment. In: Nanotechnology and plant sciences. Springer, Cham, pp 37–53Google Scholar
  97. Tong YP, Kneer R, Zhu YG (2004) Vacuolar compartmentalization: a second generation approach to engineering plants for phytoremediation. Trends Plant Sci 9:7–9PubMedCrossRefPubMedCentralGoogle Scholar
  98. Umer S, Naveed S, Ramzan N, Rafique MS (2012) Selection of a suitable method for the synthesis of copper nanoparticles. Nanotechnology.  https://doi.org/10.1142/S1793292012300058CrossRefGoogle Scholar
  99. Uzu G, Sobanska S, Sarret G, Muñoz M, Dumat C (2010) Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environ Sci Technol 44(3):1036–1042PubMedCrossRefPubMedCentralGoogle Scholar
  100. Valant J, Drobne D, Novak S (2012) Effect of ingested titanium dioxide nanoparticles on the digestive gland cell membrane of terrestrial isopods. Chemosphere 87(1):19–25PubMedCrossRefPubMedCentralGoogle Scholar
  101. Vellora V, Padil T, Cernik M (2013) Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int J Nanomedicine 8:889–898Google Scholar
  102. Vinopal S, Ruml T, Kotrba P (2007) Biosorption of Cd21 and Zn21 by cell surface-engineered Saccharomyces cerevisiae. Int Biodeterior Biodegradation 60:96–102CrossRefGoogle Scholar
  103. Vymazal J, Brezinová T (2016) Accumulation of heavy metals in aboveground biomass of Phragmitesaustralis in horizontal flow constructed wetlands for wastewater treatment: a review. Chem Eng J 290:232–242CrossRefGoogle Scholar
  104. Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012) Xylem and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441PubMedCrossRefPubMedCentralGoogle Scholar
  105. Wang S, Liu H, Zhang Y, Xin H (2015) The effect of CuO nanoparticles on reactive oxygen species and cell cycle gene expression in roots of rice. Environ Toxicol Chem 34:554–561PubMedCrossRefPubMedCentralGoogle Scholar
  106. Wang Z, Xu L, Zhao J, Wang X, White JC, Xing B (2016) CuO nanoparticle interaction with Arabidopsis thaliana: toxicity, parentprogeny transfer, and gene expression. Environ Sci Technol 50:6008–6016PubMedCrossRefPubMedCentralGoogle Scholar
  107. Watanabe T, Misawa S, Hiradate S, Osaki M (2008) Root mucilage enhances aluminum accumulation in Melastomamalabathricum, an aluminum accumulator. Plant Signal Behav 3:603–605PubMedPubMedCentralCrossRefGoogle Scholar
  108. Wessels JGH (1993) Wall growth, protein excretion and morphogenesis in fungi. New Phytol 123:397–413CrossRefGoogle Scholar
  109. White B, Yin M, Hall A, Le D, Stolbov S, Rahman T, Turro N, O’Brien S (2006) Complete CO oxidation over CuO nanoparticles supported on silica gel. Nano Lett 6:2095–2098PubMedCrossRefPubMedCentralGoogle Scholar
  110. Wierzbicka M, Obidzinska J (1998) The uptake of lead on seed imbibition and germination in different plant species. Plant Sci 137:155–171CrossRefGoogle Scholar
  111. Yallappa S, Manjanna J, Sindhe MA et al (2013) Microwave assisted rapid synthesis and biological evaluation of stable copper nanoparticles using T. arjuna bark extract. Spectrochim Acta A Mol Biomol Spectrosc 110:108–115PubMedCrossRefPubMedCentralGoogle Scholar
  112. Yamamoto O (2001) Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater 3:643–646CrossRefGoogle Scholar
  113. Yue L, Zhao J, Yu X, Lv K, Wang Z, Xing B (2018) Interaction of CuO nanoparticles with duckweed (Lemna minor. L): uptake, distribution and ROS production sites. Environ Pollut.  https://doi.org/10.1016/j.envpol.2018.09.013PubMedCrossRefPubMedCentralGoogle Scholar
  114. Yurderi M, Bulut A, Ertas İE, Zahmakiran M, Kaya M (2015) Supported copper–copper oxide nanoparticles as active, stable and low-cost catalyst in the methanolysis of ammonia–borane for chemical hydrogen storage. Appl Catal B Environ 165:169–175CrossRefGoogle Scholar
  115. Zafar MS, Khurshid Z, Najeeb S, Zohaib S, Rehman IU (2017) Therapeutic applications of nanotechnology in dentistry. In: Andronescu E, Grumezescu AM (eds) Nanostructures for Oral Medicine. ElsevierGoogle Scholar
  116. Zhang P, Ma Y, Zhang Z et al (2012) Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus). Environ Sci Technol 46(3):1834–1841PubMedCrossRefPubMedCentralGoogle Scholar
  117. Zhang D, Hua T, Xiao F, Chen C, Gersberg RM, Liu Y, Ng WJ, Tan SK (2014) Uptake and accumulation of CuO nanoparticles and CdS/ZnSquantum dot nanoparticles by Schoenoplectus tabernaemontaniin hydroponic mesocosms. Ecol Eng 70:114–123CrossRefGoogle Scholar
  118. Zuverza-Menan N, Medina-Velo IA, Barrios AC, Tan W, Peralta-Videa JR, Gardea-Torresdey JL (2015) Copper nanoparticles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum). Environ Sci: Processes Impacts 17:1783–1793Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Abreeq Fatima
    • 1
  • Shikha Singh
    • 1
  • Sheo Mohan Prasad
    • 1
  1. 1.Ranjan Plant Physiology and Biochemistry Laboratory, Department of BotanyUniversity of AllahabadAllahabadIndia

Personalised recommendations