Advertisement

Impact of Silver Nanoparticles on Plant Physiology: A Critical Review

  • Fareen Sami
  • Husna Siddiqui
  • Shamsul Hayat
Chapter
  • 14 Downloads
Part of the Sustainable Agriculture Reviews book series (SARV, volume 41)

Abstract

Nanotechnology is a rapidly growing field of science and technology that focuses on the production and utilization of materials measuring <100 nm in at least one dimension. The unique physicochemical properties of nanoparticles are a result of their high surface area and high reactivity, which renders them beneficial in biotechnology industries and in agriculture. In recent years, researchers have focused on the beneficial effects of silver nanoparticles (Ag-NPs) on plant growth and development. Ag-NPs, when applied at low concentrations, enhance shoot and root growth of many species. Also, Ag-NPs enhance the activities of antioxidant enzymes which limit production of reactive oxygen species in plant cells. Lower doses of Ag-NPs are also beneficial in enhancing chlorophyll production as well as enhancing chlorophyll florescence parameters. This review highlights the current understanding as well as the future possibilities of Ag-NP research in plant systems.

Keywords

Abiotic stress Antioxidative defense system Compatible solutes Flooding stress Growth Heat stress Nanotechnololgy Photosynthesis ROS homeostasis Salt stress Seed germination 

References

  1. Abd-Alla MH, Nafady NA, Khalaf DM (2016) Assessment of silver nanoparticles contamination on faba bean-Rhizobium leguminosarum bv. viciae-Glomus aggregatum symbiosis: implications for induction of autophagy process in root nodule. Agric Ecosyst Environ 218:163–177CrossRefGoogle Scholar
  2. Al-Huqail AA, Hatata MM, Al-Huqail AA, Ibrahim MM (2018) Preparation, characterization of silver phyto nanoparticles and their impact on growth potential of Lupinus termis L. seedlings. Saudi J Biol Sci 25(2):313–319PubMedCrossRefPubMedCentralGoogle Scholar
  3. Almutairi ZM (2016) Influence of silver nano-particles on the salt resistance of tomato (Solanum lycopersicum) during germination. Int J Agric Biol 18(2):449–457CrossRefGoogle Scholar
  4. Almutairi ZM, Alharbi A (2015) Effect of silver nanoparticles on seed germination of crop plants. J Adv Agric 4(1):283–288Google Scholar
  5. Cvjetko P, Zovko M, Štefanić PP, Biba R, Tkalec M, Domijan AM, Balen B (2018) Phytotoxic effects of silver nanoparticles in tobacco plants. Environ Sci Pollut Res 25(6):5590–5602CrossRefGoogle Scholar
  6. Darvishzadeh F (2015) Effects of silver nanoparticles on salinity tolerance in basil plant (Ocimum basilicum L.) during germination in vitro. New Cell Mol Biotechnol J 5(20):63–70Google Scholar
  7. Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47(2):1082–1090PubMedCrossRefPubMedCentralGoogle Scholar
  8. Durán N, Marcato PD, De Souza GI, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3(2):203–208CrossRefGoogle Scholar
  9. Ekhtiyari R, Moraghebi F (2011) The study of the effects of nano silver technology on salinity tolerance of cumin seed (Cuminum cyminum L.). Plant Ecosyst 7(25):99–107Google Scholar
  10. Ekhtiyari R, Mohebbi H, Mansouri M (2011) The study of the effects of nano silver technology on salinity tolerance of (Foeniculum vulgare mill.). Plant Ecosyst 7(27):55–62Google Scholar
  11. El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27(1):42–49PubMedCrossRefPubMedCentralGoogle Scholar
  12. García-Sánchez S, Bernales I, Cristobal S (2015) Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling. BMC Genomics 16:1–16CrossRefGoogle Scholar
  13. Geisler-Lee J, Wang Q, Yao Y, Zhang W, Geisler M, Li K, Ma X (2012) Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology 7(3):323–337PubMedCrossRefPubMedCentralGoogle Scholar
  14. Geisler-Lee J, Brooks M, Gerfen J, Wang Q, Fotis C, Sparer A, Geisler M (2014) Reproductive toxicity and life history study of silver nanoparticle effect, uptake and transport in Arabidopsis thaliana. Nanomaterials 4(2):301–318PubMedPubMedCentralCrossRefGoogle Scholar
  15. Ghavam M (2018) Effect of silver nanoparticles on seed germination and seedling growth in Thymus vulgaris L. and Thymus daenensis Celak under salinity stress. J Rangeland Sci 8(1):93–100Google Scholar
  16. Hojjat SS (2019) Effect of interaction between Ag nanoparticles and salinity on germination stages of Lathyrus sativus L. J Environ Soil Sci 2(2):186–191Google Scholar
  17. Hojjat SS, Hojjat H (2015) Effect of nano silver on seed germination and seedling growth in fenugreek seed. Int J Food Eng 1(2):106–110Google Scholar
  18. Hojjat SS, Kamyab M (2017) The effect of silver nanoparticle on Fenugreek seed germination under salinity levels. Russ Agric Sci 43(1):61–65CrossRefGoogle Scholar
  19. Homaee MB, Ehsanpour AA (2016) Silver nanoparticles and silver ions: oxidative stress responses and toxicity in potato (Solanum tuberosum L) grown in vitro. Hortic Environ Biotechnol 57(6):544–553CrossRefGoogle Scholar
  20. Iqbal M, Raja NI, Hussain M, Ejaz M, Yasmeen F (2019) Effect of silver nanoparticles on growth of wheat under heat stress. Iranian J Sci Technol Trans A Sci 43(2):387–395CrossRefGoogle Scholar
  21. Jasim B, Thomas R, Mathew J, Radhakrishnan EK (2017) Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharm J 25(3):443–447PubMedCrossRefPubMedCentralGoogle Scholar
  22. Latef AAHA, Alhmad MFA, Abdelfattah KE (2017) The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants. J Plant Growth Regul 36(1):60–70CrossRefGoogle Scholar
  23. Li CC, Dang F, Li M, Zhu M, Zhong H, Hintelmann H, Zhou DM (2017) Effects of exposure pathways on the accumulation and phytotoxicity of silver nanoparticles in soybean and rice. Nanotoxicology 11(5):699–709PubMedCrossRefPubMedCentralGoogle Scholar
  24. Liang L, Tang H, Deng Z, Liu Y, Chen X, Wang H (2018) Ag nanoparticles inhibit the growth of the bryophyte, Physcomitrella patens. Ecotoxicol Environ Saf 164:739–748PubMedCrossRefPubMedCentralGoogle Scholar
  25. Mehrian SK, Heidari R, Rahmani F (2015) Effect of silver nanoparticles on free amino acids content and antioxidant defense system of tomato plants. Indian J Plant Physiol 20(3):257–263CrossRefGoogle Scholar
  26. Mehta CM, Srivastava R, Arora S, Sharma AK (2016) Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech 6(2):254PubMedPubMedCentralGoogle Scholar
  27. Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A (2013) Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48–54PubMedCrossRefPubMedCentralGoogle Scholar
  28. Mohamed AKS, Qayyum MF, Abdel-Hadi AM, Rehman RA, Ali S, Rizwan M (2017) Interactive effect of salinity and silver nanoparticles on photosynthetic and biochemical parameters of wheat. Arch Agron Soil Sci 63(12):1736–1747CrossRefGoogle Scholar
  29. Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42(12):4447–4453PubMedCrossRefPubMedCentralGoogle Scholar
  30. Mustafa G, Sakata K, Hossain Z, Komatsu S (2015) Proteomic study on the effects of silver nanoparticles on soybean under flooding stress. J Proteome 122:100–118CrossRefGoogle Scholar
  31. Nair PMG, Chung IM (2014) Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. Chemosphere 112:105–113PubMedCrossRefPubMedCentralGoogle Scholar
  32. Olchowik J, Bzdyk R, Studnicki M, Bederska-Błaszczyk M, Urban A, Aleksandrowicz-Trzcińska M (2017) The effect of silver and copper nanoparticles on the condition of english oak (Quercus robur L.) seedlings in a container nursery experiment. Forests 8(9):310CrossRefGoogle Scholar
  33. Panda KK, Achary VMM, Krishnaveni R, Padhi BK, Sarangi SN, Sahu SN, Panda BB (2011) In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol In Vitro 25(5):1097–1105PubMedCrossRefPubMedCentralGoogle Scholar
  34. Pandey C, Khan E, Mishra A, Sardar M, Gupta M (2014) Silver nanoparticles and its effect on seed germination and physiology in Brassica juncea L.(Indian mustard) plant. Adv Sci Lett 20(7–8):1673–1676CrossRefGoogle Scholar
  35. Panyala NR, Peña-Méndez EM, Havel J (2008) Silver or silver nanoparticles: a hazardous threat to the environment and human health? J Appl Biomed (De Gruyter Open) 6(3):117–129CrossRefGoogle Scholar
  36. Parveen A, Rao S (2015) Effect of nanosilver on seed germination and seedling growth in Pennisetum glaucum. J Clust Sci 26(3):693–701CrossRefGoogle Scholar
  37. Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452:321–332PubMedCrossRefPubMedCentralGoogle Scholar
  38. Qian H, Peng X, Han X, Ren J, Sun L, Fu Z (2013) Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci 25(9):1947–1956CrossRefGoogle Scholar
  39. Rani PU, Yasur J, Loke KS, Dutta D (2016) Effect of synthetic and biosynthesized silver nanoparticles on growth, physiology and oxidative stress of water hyacinth: Eichhornia crassipes (Mart) Solms. Acta Physiol Plant 38(2):58CrossRefGoogle Scholar
  40. Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M (2017) Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem 5:78PubMedPubMedCentralCrossRefGoogle Scholar
  41. Rezvani N, Sorooshzadeh A, Farhadi N (2012) Effect of nano-silver on growth of saffron in flooding stress. World Acad Sci Eng Technol 6(1):517–522Google Scholar
  42. Salama HM (2012) Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int J Biotechnol Res 3(10):190–197Google Scholar
  43. Savithramma N, Rao ML, Rukmini K, Devi PS (2011) Antimicrobial activity of silver nanoparticles synthesized by using medicinal plants. Int J ChemTech Res 3(3):1394–1402Google Scholar
  44. Savithramma N, Ankanna S, Bhumi G (2012) Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vision 2(1):2Google Scholar
  45. Sharma P, Bhatt D, Zaidi MGH, Saradhi PP, Khanna PK, Arora S (2012) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167(8):2225–2233PubMedCrossRefPubMedCentralGoogle Scholar
  46. Sosan A, Svistunenko D, Straltsova D, Tsiurkina K, Smolich I, Lawson T, Colbeck I (2016) Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants. Plant J 85(2):245–257PubMedCrossRefPubMedCentralGoogle Scholar
  47. Thuesombat P, Hannongbua S, Akasit S, Chadchawan S (2014) Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol Environ Saf 104:302–309PubMedCrossRefPubMedCentralGoogle Scholar
  48. Tomacheski D, Pittol M, Simões DN, Ribeiro VF, Santana RMC (2017) Impact of silver ions and silver nanoparticles on the plant growth and soil microorganisms. Glob J Environ Sci Manag 3(4):341–350Google Scholar
  49. Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S, Chauhan DK (2017) Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177PubMedCrossRefPubMedCentralGoogle Scholar
  50. Vannini C, Domingo G, Onelli E, Prinsi B, Marsoni M, Espen L, Bracale M (2013) Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS One 8(7):e68752PubMedPubMedCentralCrossRefGoogle Scholar
  51. Vinković T, Štolfa Čamagajevac I, Tkalec M, Goessler W, Domazet Jurašin D, Vinković Vrček I (2018) Does plant growing condition affects biodistribution and biological effects of silver nanoparticles? Span J Agric Res 16:1–13Google Scholar
  52. Wang J, Koo Y, Alexander A, Yang Y, Westerhof S, Zhang Q, Alvarez PJ (2013) Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environ Sci Technol 47(10):5442–5449PubMedCrossRefPubMedCentralGoogle Scholar
  53. Wang P, Menzies NW, Lombi E, Sekine R, Blamey FPC, Hernandez-Soriano MC, Kopittke PM (2015) Silver sulfide nanoparticles (Ag2S-NPs) are taken up by plants and are phytotoxic. Nanotoxicology 9(8):1041–1049PubMedCrossRefPubMedCentralGoogle Scholar
  54. Yang J, Cao W, Rui Y (2017) Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms. J Plant Interact 12(1):158–169CrossRefGoogle Scholar
  55. Yang J, Jiang F, Ma C, Rui Y, Rui M, Adeel M, Xing B (2018) Alteration of crop yield and quality of wheat upon exposure to silver nanoparticles in a life cycle study. J Agric Food Chem 66(11):2589–2597PubMedCrossRefPubMedCentralGoogle Scholar
  56. Yasur J, Rani PU (2013) Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology. Environ Sci Pollut Res 20(12):8636–8648CrossRefGoogle Scholar
  57. Yin L, Colman BP, McGill BM, Wright JP, Bernhardt ES (2012) Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS One 7(10):e47674PubMedPubMedCentralCrossRefGoogle Scholar
  58. Younes NA, Nassef DM (2015) Effect of silver nanoparticles on salt tolerancy of tomato transplants (Solanum lycopersicom L. Mill.). Assiut. J Agric Sci 46:76–85Google Scholar
  59. Zou X, Li P, Lou J, Zhang H (2017) Surface coating-modulated toxic responses to silver nanoparticles in Wolffia globosa. Aquat Toxicol 189:150–158PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Fareen Sami
    • 1
  • Husna Siddiqui
    • 1
  • Shamsul Hayat
    • 1
  1. 1.Plant Physiology & Biochemistry Section, Department of Botany, Faculty of Life SciencesAligarh Muslim UniversityAligarhIndia

Personalised recommendations