Response of Titanium Nanoparticles to Plant Growth: Agricultural Perspectives

  • Ahmad Faraz
  • Mohammad Faizan
  • Qazi Fariduddin
  • Shamsul Hayat
Part of the Sustainable Agriculture Reviews book series (SARV, volume 41)


Utilization of nanoparticles (NPs) has increased tremendously in recent years by virtue of their unique properties, which can be applied for numerous purposes. Titanium (Ti)/titanium dioxide (TiO2) NPs are among the most widely used NPs for applications including the agriculture sector. Titanium is considered a beneficial element for plant growth and its nano form can be used to improve growth and yield of plants. Research has shown that TiO2 NPs generate both positive as well as a negative impact to plant growth. This review discusses current knowledge of TiO2 NPs including their interactions, transport, and translocation within plants, and future perspectives regarding their use.


Agriculture Nanoparticles Plants Titanium dioxide 


  1. Abdel Latef AAH, Srivastava AK, El-sadek MSA, Kordrostami M, Tran LSP (2018) Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degrad Dev 29(4):1065–1073CrossRefGoogle Scholar
  2. Batley G, Kirby JK, McClaughlin MJ (2013) Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 46:854–862PubMedCrossRefGoogle Scholar
  3. Burke DJ, Zhu S, Pablico-Lansigan MP, Hewins CR, Samia ACS (2014) Titanium oxide nanoparticle effects on composition of soil microbial communities and plant performance. Biol Fertil Soils 50(7):1169–1173CrossRefGoogle Scholar
  4. Castiglione MR, Giorgetti L, Geri C, Cremonini R (2011) The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J Nanopart Res 13(6):2443–2449CrossRefGoogle Scholar
  5. Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22:577–583PubMedCrossRefGoogle Scholar
  6. Chichiriccò G, Poma A (2015) Penetration and toxicity of Nanomaterials in higher plants. Nano 5(2):851–873Google Scholar
  7. Cox A, Venkatachalam P, Sahi S, Sharma N (2016) Silver and titanium dioxide nanoparticle toxicity in plants: a review of current research. Plant Physiol Biochem 107:147–163PubMedCrossRefGoogle Scholar
  8. Deepa K, Singha S, Panda T (2014) Doxorubicin nanoconjugates. J Nanosci Nanotechnol 14:892–904PubMedCrossRefGoogle Scholar
  9. Demir E, Kaya N, Kaya B (2014) Genotoxic effects of zinc oxide and titanium dioxide nanoparticles on root meristem cells of Allium cepa by comet assay. Turk J Biol 38(1):31–39CrossRefGoogle Scholar
  10. Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13(4):822CrossRefGoogle Scholar
  11. Fellmann S, Eichert T (2017) Acute effects of engineered nanoparticles on the growth and gas exchange of Zea mays L. what are the underlying causes? Water Air Soil Pollut 228(5):176CrossRefGoogle Scholar
  12. Frazier TP, Burklew CE, Zhang B (2014) Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum). Funct Integr Genomics 14(1):75–83PubMedCrossRefGoogle Scholar
  13. Ghosh M, Bandyopadhyay M, Mukherjee A (2010) Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere 81(10):1253–1262PubMedCrossRefGoogle Scholar
  14. Hudlikar M, Joglekar S, Dhaygude M, Kodam K (2012) Green synthesis of TiO2 nanoparticles by using aqueous extract of Jatropha curcas L. latex. Mater Lett 75:196–199CrossRefGoogle Scholar
  15. Ji Y, Zhou Y, Ma C, Feng Y, Hao Y, Rui Y, Xing B (2017) Jointed toxicity of TiO2 NPs and Cd to rice seedlings: NPs alleviated Cd toxicity and Cd promoted NPs uptake. Plant Physiol Biochem 110:82–93PubMedCrossRefGoogle Scholar
  16. Korenkova L, Sebesta M, Urik M, Kolen cik M, Kratosova G, Bujdos M, Vavra I, Dobrocka E (2017) Physiological response of culture media-grown barley (Hordeum vulgare L.) to titanium oxide nanoparticles. Acta Agric Scand 67:285–291Google Scholar
  17. Korosi L, Bouderias S, Csepregi K, Bognár B, Teszlák P, Scarpellini A, Jakab G (2019) Nanostructured TiO2-induced photocatalytic stress enhances the antioxidant capacity and phenolic content in the leaves of Vitis vinifera on a genotype-dependent manner. J Photochem Photobiol B Biol 190:137–145CrossRefGoogle Scholar
  18. Kumar PV, Pammi SV, Kollu P, Satyanarayan KV, Shameem U (2014) Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their antibacterial activity. Ind Crop Prod 52:562–566CrossRefGoogle Scholar
  19. Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank A-M, Brisset F, Carriere M (2012) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ 431:197–208PubMedCrossRefGoogle Scholar
  20. Larue C, Castillo-Michel H, Sobanska S, Cécillon L, Bureau S, Barthès V, Ouerdane L, Carrière M, Sarret G (2014) Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazard Mater 264:98–106PubMedCrossRefGoogle Scholar
  21. Mahmoodzadeh H, Nabavi M, Kashefi H (2013) Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). J Ornam Hortic Plants 3:25–32Google Scholar
  22. Marchiol L, Mattiello A, Poscic F, Fellet G, Zavalloni C, Carlino E, Musetti R (2016) Changes in physiological and agronomical parameters of barley (Hordeum vulgare) exposed to cerium and titanium dioxide nanoparticles. Int J Environ Res Public Health 13:332PubMedCentralCrossRefPubMedGoogle Scholar
  23. Menard A, Drobni D, Jemec A (2011) Ecotoxicity of nanosized TiO2. Review of in vivo data. Environ Pollut 159:677–684PubMedCrossRefGoogle Scholar
  24. Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered Nanomaterials in vascular plants. Environ Sci Technol 46(17):9224–9239PubMedCrossRefGoogle Scholar
  25. Morteza E, Moaveni P, Farahani HA, Kiyani M (2013) Study of photosynthetic pigments changes of maize (Zea mays L.) under nano TiO2 spraying at various growth stages. Springer Plus 2(1):247PubMedCrossRefGoogle Scholar
  26. Muhd Julkapli N, Bagheri S, Bee Abd Hamid S (2014) Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. Sci World J 2014:1–25CrossRefGoogle Scholar
  27. Mukherjee A, Majumdar S, Servin AD, Pagano L, Dhankher OP, White JC (2016) Carbon nanomaterials in agriculture: a critical review. Front Plant Sci 7(16):172PubMedPubMedCentralGoogle Scholar
  28. Pakrashi S, Jain N, Dalai S, Jayakumar J, Chandrasekaran PT, Raichur AM, Chandrasekaran N, Mukherjee A (2014) In vivo genotoxicity assessment of titanium dioxide nanoparticles by Allium cepa root tip assay at high exposure concentrations. PLoS One 9(2):87789CrossRefGoogle Scholar
  29. Peters RJ, van Bemmel G, Herrera-Rivera Z, Helsper HP, Marvin HJ, Weigel S et al (2014) Characterization of titanium dioxide nanoparticles in food products: analytical methods to define nanoparticles. J Agric Food Chem 62:6285–6293PubMedCrossRefGoogle Scholar
  30. Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14:1109CrossRefGoogle Scholar
  31. Rafique R, Arshad M, Khokhar MF, Qazi IA, Hamza A, Virk N (2015) Growth response of wheat to titania nanoparticles application. NUST J Eng Sci 7(1):42–46Google Scholar
  32. Rafique R, Zahra Z, Virk N, Shahid M, Pinelli E, Park TJ, Kallerhoff J, Arshad M (2018) Dose-dependent physiological responses of Triticum aestivum L. to soil applied TiO2 nanoparticles: alterations in chlorophyll content, H2O2 production, and genotoxicity. Agric Ecosyst Environ 255:95–101CrossRefGoogle Scholar
  33. Rajakumar G, Rahuman AA, Priyamvada B, Khanna VG, Kumar DK, Sujin PJ (2012) Eclipta prostrate leaf aqueous extract mediated synthesis of titanium dioxide nanoparticles. Mater Lett 68:115–117CrossRefGoogle Scholar
  34. Raliya R, Biswas P, Tarafdar JC (2015) TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnol Rep 5:22–26CrossRefGoogle Scholar
  35. Ramimoghadam D, Bagheri S, Bee S, Hamid A (2014) Biotemplated synthesis of anatase titanium dioxide nanoparticles via lignocellulosic waste material. Biomed Res Int 2014:7CrossRefGoogle Scholar
  36. Roopan SM, Bharathi A, Prabhakarn A, Rahuman AA, Velayutham K, Rajakumar G, Padmaja RD, Lekshmi M, Madhumitha G (2012) Efficient phyto-synthesis and structural characterization of rutile TiO2 nanoparticles using Annona squamosa peel extract. Spectrochim Acta Part A 98:86–90CrossRefGoogle Scholar
  37. Schwabe F, Tanner S, Schulin R, Rotzetter A, Stark W, von Quadt A, Nowack B (2015) Dissolved cerium contributes to uptake of Ce in the presence of differently sized CeO-nanoparticles by three crop plants. Metallomics 7(3):466–477PubMedCrossRefGoogle Scholar
  38. Senthilkumar S, Rajendran A (2018) Biosynthesis of TiO2 nanoparticles using Justicia gendarussa leaves for photocatalytic and toxicity studies. Res Chem Intermed 44(10):5923–5940CrossRefGoogle Scholar
  39. Servin AD, Castillo-Michel H, Hernandez-Viezcas JA, Diaz BC, Peralta-Videa JR, Gardea-Torresdey JL (2012) Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environ Sci Technol 46(14):7637–7643PubMedCrossRefGoogle Scholar
  40. Simonin M, Richaume A, Guyonnet JP, Dubost A, Martins JM, Pommier T (2016) Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers. Sci Rep 6:33643PubMedPubMedCentralCrossRefGoogle Scholar
  41. Singh J, Lee BK (2016) Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): a possible mechanism for the removal of Cd from the contaminated soil. J Environ Manag 170:88–96CrossRefGoogle Scholar
  42. Srinivasan M, Venkatesan M, Arumugam V, Natesan G, Saravanan N, Murugesan S, Pugazhendhi A (2019) Green synthesis and characterization of titanium dioxide nanoparticles (TiO2 NPs) using Sesbania grandiflora and evaluation of toxicity in zebrafish embryos. Process Biochem 80:197–202CrossRefGoogle Scholar
  43. Song U, Jun H, Waldman B, Roh J, Kim Y, Yi J, Lee EJ (2013) Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf 93:60–67CrossRefGoogle Scholar
  44. Subhapriya S, Gomathipriya P (2018) Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microb Pathog 116:215–220PubMedCrossRefGoogle Scholar
  45. Sundrarajan M, Gowri S (2011) Green synthesis of titanium dioxide nanoparticles by Nyctanthes arbor-tristis leaves extract. Chalcogenide Lett 8:447–451Google Scholar
  46. Sundrarajan M, Bama K, Bhavani M, Jegatheeswaran S, Ambika S, Sangili A, Sumathi R (2017) Obtaining titanium dioxide nanoparticles with spherical shape and antimicrobial properties using M. citrifolia leaves extract by hydrothermal method. J Photochem Photobiol B Biol 171:117–124CrossRefGoogle Scholar
  47. Tan W, Peralta-Videa JR, Gardea-Torresdey JL (2018) Interaction of titanium dioxide nanoparticles with soil components and plants: current knowledge and future research needs–a critical review. Environ Sci Nano 5(2):257–278CrossRefGoogle Scholar
  48. Tumburu L, Andersen CP, Rygiewicz PT, Reichman JR (2017) Molecular and physiological responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis. Environ Toxicol Chem 36(1):71–82PubMedCrossRefGoogle Scholar
  49. U.S. Geological Survey (2015) Mineral commodity summaries 2015. U.S. Government Printing Office, Washington, DC. Scholar
  50. Valencia S, Vargas X, Rios L, Restrepo G, Marín JM (2013) Sol–gel and low-temperature solvothermal synthesis of photoactive nano-titanium dioxide. J Photochem Photobiol A Chem 251:175–181CrossRefGoogle Scholar
  51. Velayutham K, Rahuman AA, Rajakumar G, Santhoshkumar T, Marimuthu S, Jayaseelan C, Bagavan A, Kirthi AV, Kamaraj C, Zahir AA, Elango G (2012) Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis. Parasitol Res 111:2329–2337PubMedCrossRefGoogle Scholar
  52. Waghmode MS, Gunjal AB, Mulla JA, Patil NN, Nawani NN (2019) Studies on the titanium dioxide nanoparticles: biosynthesis, applications and remediation. SN Appl Sci 1(4):310CrossRefGoogle Scholar
  53. Wang S, Kurepa J, Smalle JA (2011) Ultra-small TiO2 nanoparticles disrupt microtubular networks in Arabidopsis thaliana. Plant Cell Environ 34(5):811–820PubMedCrossRefGoogle Scholar
  54. Wang TY, Jiang HT, Wan L, Zhao QF, Jiang TY, Wang B, Wang SL (2015) Potential application of functional porous TiO2 nanoparticles in light-controlled drug release and targeted drug delivery. Acta Biomater 13:354–363PubMedCrossRefGoogle Scholar
  55. Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46(4):2242–2250PubMedPubMedCentralCrossRefGoogle Scholar
  56. Xia B, Chen B, Sun X, Qu K, Ma F, Du M (2015) Interaction of TiO 2 nanoparticles with the marine microalga Nitzschia closterium: growth inhibition, oxidative stress and internalization. Sci Total Environ 508:525–533PubMedCrossRefGoogle Scholar
  57. Yang F, Hong F, You W, Liu C, Gao F, Wu C, Yang P (2006) Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110(2):179–190PubMedCrossRefGoogle Scholar
  58. Ze Y, Liu C, Wang L, Hong M, Hong F (2011) The regulation of TiO2 nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of Arabidopsis thaliana. Biol Trace Elem Res 143:1131PubMedCrossRefGoogle Scholar
  59. Zheng L, Hong F, Lu S, Liu C, Hong J, Niu G, Peralta-Videa JR, Duarte-Gardea M, Gardea-Torresdey JL (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104(1):83–91PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ahmad Faraz
    • 1
  • Mohammad Faizan
    • 2
  • Qazi Fariduddin
    • 1
  • Shamsul Hayat
    • 1
  1. 1.Plant Physiology Section, Department of Botany, Faculty of Life SciencesAligarh Muslim UniversityAligarhIndia
  2. 2.Tree Seed Center, College of Forest Resources and EnvironmentNanjing Forestry UniversityNanjingPeople’s Republic of China

Personalised recommendations