Advertisement

Nanoparticles: A New Threat to Crop Plants and Soil Rhizobia?

  • Hassan RasouliEmail author
  • Jelena Popović-Djordjević
  • R. Z. Sayyed
  • Simin Zarayneh
  • Majid Jafari
  • Bahman Fazeli-Nasab
Chapter
Part of the Sustainable Agriculture Reviews book series (SARV, volume 41)

Abstract

Nanoparticles (NPs) are extremely small units occurring at the scale of nanometers (nm) which have been synthesized from both chemical and natural sources. The applicability of these particles has expanded over the past decade so that thousands of useful applications are now attributed to these remarkable particles. The impact of nanotechnology on medicine and other branches of material science suggests that researchers can craft particles for improving and developing agricultural products. The potential benefits of different types of NPs for enhancing the sustainable growth of plants have evaluated under in vitro and greenhouse conditions; results show that nanoparticles cause both positive and adverse effects to plants. In some cases, NPs trigger the growth of aerial parts of plants; for other species, no benefits are observed, and in others, growth of target plants decrease or are partially inhibited. Introduction of nanoparticles to agricultural systems, after consideration of possible safety concerns and possible side effects to crop plants and soil ecosystems, may be helpful to farmers for enhancing crop growth, and for conserving arable lands and managing them sustainably. This chapter aims to present and briefly discuss several nanoparticles and report potential side-effects to plants and soil microorganisms.

Keywords

Agriculture Rhizobacteria Nanoparticles Toxicity 

Notes

Acknowledgments

This chapter is dedicated to Prof. Nicolas Taylor, University of Western Australia, for his kindness, and for his endless support.

References

  1. Abigail EA, Chidambaram R (2017) Nanotechnology in herbicide resistance. In: Seehra MS (ed) Nanostructured materials: fabrication to applications. IntechOpen, Rijeka, pp 207–212Google Scholar
  2. Adhikari T, Kundu S, Biswas AK, Tarafdar JC, Rao AS (2012) Effect of copper oxide nanoparticle on seed germination of selected crops. J Agric Sci Technol A2(6A):815Google Scholar
  3. Alimohammadi M, Xu Y, Wang D, Biris AS, Khodakovskaya MV (2011) Physiological responses induced in tomato plants by a two-component nanostructural system composed of carbon nanotubes conjugated with quantum dots and it’s in vivo multimodal detection. Nanotechnology 22(29):295101PubMedCrossRefGoogle Scholar
  4. Ashraf MA, Akbar A, Askari SH, Iqbal M, Rasheed R, Hussain I (2018) Recent advances in abiotic stress tolerance of plants through chemical priming: an overview. In: Advances in seed priming. Springer, Singapore, pp 51–79CrossRefGoogle Scholar
  5. Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46(3):1819–1827PubMedPubMedCentralCrossRefGoogle Scholar
  6. Blum A (2018) Plant breeding for stress environments. CRC Press, Boca RatonCrossRefGoogle Scholar
  7. Borlaug NE (2000) Ending world hunger. The promise of biotechnology and the threat of antiscience zealotry. Plant Physiol 124(2):487–490PubMedPubMedCentralCrossRefGoogle Scholar
  8. Chen H (2018) Metal based nanoparticles in agricultural system: behavior, transport, and interaction with plants. Chem Spec Bioavailab 30(1):123–134CrossRefGoogle Scholar
  9. Chen J, Dou R, Yang Z, You T, Gao X, Wang L (2018) Phytotoxicity and bioaccumulation of zinc oxide nanoparticles in rice (Oryza sativa L.). Plant Physiol Biochem 130:604–612PubMedCrossRefGoogle Scholar
  10. Cui D, Zhang P, Ma Y-h, He X, Li Y-y, Zhao Y-c, Zhang Z-y (2014) Phytotoxicity of silver nanoparticles to cucumber (Cucumis sativus) and wheat (Triticum aestivum). J Zheijang Univ Sci A 15(8):662–670CrossRefGoogle Scholar
  11. Dinesh R, Anandaraj M, Srinivasan V, Hamza S (2012) Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma 173:19–27CrossRefGoogle Scholar
  12. Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (2011) TiO 2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13(4):822–828CrossRefGoogle Scholar
  13. Faisal M, Saquib Q, Alatar AA, Al-Khedhairy AA, Hegazy AK, Musarrat J (2013) Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mater 250:318–332PubMedCrossRefGoogle Scholar
  14. Fanzo J, Davis C, McLaren R, Choufani J (2018) The effect of climate change across food systems: implications for nutrition outcomes. Glob Food Sec 18:12–19CrossRefGoogle Scholar
  15. Foltête A-S, Masfaraud J-F, Bigorgne E, Nahmani J, Chaurand P, Botta C, Labille J, Rose J, Férard J-F, Cotelle S (2011) Environmental impact of sunscreen nanomaterials: ecotoxicity and genotoxicity of altered TiO2 nanocomposites on Vicia faba. Environ Pollut 159(10):2515–2522PubMedCrossRefGoogle Scholar
  16. García-Gómez C, Obrador A, González D, Babín M, Fernández MD (2018) Comparative study of the phytotoxicity of ZnO nanoparticles and Zn accumulation in nine crops grown in a calcareous soil and an acidic soil. Sci Total Environ 644:770–780PubMedCrossRefGoogle Scholar
  17. Hong J, Rico CM, Zhao L, Adeleye AS, Keller AA, Peralta-Videa JR, Gardea-Torresdey JL (2015) Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ Sci: Processes Impacts 17(1):177–185Google Scholar
  18. Jena BK, Raj CR (2007) Synthesis of flower-like gold nanoparticles and their electrocatalytic activity towards the oxidation of methanol and the reduction of oxygen. Langmuir 23(7):4064–4070PubMedCrossRefGoogle Scholar
  19. Johansen A, Pedersen AL, Jensen KA, Karlson U, Hansen BM, Scott-Fordsmand JJ, Winding A (2008) Effects of C60 fullerene nanoparticles on soil bacteria and protozoans. Environ Toxicol Chem Int J 27(9):1895–1903CrossRefGoogle Scholar
  20. Juan W, Kunhui S, Zhang L, Youbin S (2017) Effects of silver nanoparticles on soil microbial communities and bacterial nitrification in suburban vegetable soils. Pedosphere 27(3):482–490CrossRefGoogle Scholar
  21. Karunakaran G, Suriyaprabha R, Rajendran V, Kannan N (2016) Influence of ZrO2, SiO2, Al2O3 and TiO2 nanoparticles on maize seed germination under different growth conditions. IET Nanobiotechnol 10(4):171–177PubMedCrossRefGoogle Scholar
  22. Koelmel J, Leland T, Wang H, Amarasiriwardena D, Xing B (2013) Investigation of gold nanoparticles uptake and their tissue level distribution in rice plants by laser ablation-inductively coupled-mass spectrometry. Environ Pollut 174:222–228PubMedCrossRefGoogle Scholar
  23. Lee W-M, Kwak JI, An Y-J (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86(5):491–499PubMedCrossRefGoogle Scholar
  24. Lewis RW (2016) Toxicity of engineered nanomaterials to plant growth promoting Rhizobacteria. PhDGoogle Scholar
  25. Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H, Tam PK-H, Chiu J-F, Che C-M (2007) Silver nanoparticles: partial oxidation and antibacterial activities. JBIC J Biol Inorg Chem 12(4):527–534PubMedCrossRefGoogle Scholar
  26. Manna I, Bandyopadhyay M (2017) Engineered nickel oxide nanoparticle causes substantial physicochemical perturbation in plants. Front Chem 5:92PubMedPubMedCentralCrossRefGoogle Scholar
  27. Mazumdar H, Ahmed G (2011) Phytotoxicity effect of silver nanoparticles on Oryza sativa. IJ ChemTech Res 3(3):1494–1500Google Scholar
  28. Mishra VK, Kumar A (2009) Impact of metal nanoparticles on the plant growth promoting rhizobacteria. Dig J Nanomater Biostruct 4:587–592Google Scholar
  29. Mohanraj V, Chen Y (2006) Nanoparticles-a review. Trop J Pharm Res 5(1):561–573Google Scholar
  30. Nair R, Poulose AC, Nagaoka Y, Yoshida Y, Maekawa T, Kumar DS (2011) Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolabels for plants. J Fluoresc 21(6):2057PubMedPubMedCentralCrossRefGoogle Scholar
  31. Nair PMG, Kim S-H, Chung IM (2014) Copper oxide nanoparticle toxicity in mung bean (Vigna radiata L.) seedlings: physiological and molecular level responses of in vitro grown plants. Acta Physiol Plant 36(11):2947–2958CrossRefGoogle Scholar
  32. Nuccio ML, Paul M, Bate NJ, Cohn J, Cutler SR (2018) Where are the drought tolerant crops? An assessment of more than two decades of plant biotechnology effort in crop improvement. Plant Sci 273:110–119PubMedCrossRefGoogle Scholar
  33. Peng C, Duan D, Xu C, Chen Y, Sun L, Zhang H, Yuan X, Zheng L, Yang Y, Yang J (2015) Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants. Environ Pollut 197:99–107PubMedCrossRefGoogle Scholar
  34. Pérez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci Former Pesticide Sci 65(5):540–545CrossRefGoogle Scholar
  35. Prakash MG, Chung IM (2016) Determination of zinc oxide nanoparticles toxicity in root growth in wheat (Triticum aestivum L.) seedlings. Acta Biol Hung 67(3):286–296PubMedCrossRefGoogle Scholar
  36. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014PubMedPubMedCentralCrossRefGoogle Scholar
  37. Rajput VD, Minkina T, Sushkova S, Tsitsuashvili V, Mandzhieva S, Gorovtsov A, Nevidomskyaya D, Gromakova N (2018a) Effect of nanoparticles on crops and soil microbial communities. J Soils Sediments 18(6):2179–2187CrossRefGoogle Scholar
  38. Rajput V, Minkina T, Suskova S, Mandzhieva S, Tsitsuashvili V, Chapligin V, Fedorenko A (2018b) Effects of copper nanoparticles (CuO NPs) on crop plants: a mini review. BioNanoScience 8(1):36–42CrossRefGoogle Scholar
  39. Rana S, Kalaichelvan P (2013) Ecotoxicity of nanoparticles. ISRN toxicology2013CrossRefGoogle Scholar
  40. Rasouli H (2018) Devil’s hand conceals behind the obscure side of AgNPs: a letter to the editor. Int J Biol Macromol 125:510–513PubMedCrossRefGoogle Scholar
  41. Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M (2017) Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem 5:78PubMedPubMedCentralCrossRefGoogle Scholar
  42. Rico CM, Hong J, Morales MI, Zhao L, Barrios AC, Zhang J-Y, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol 47(11):5635–5642PubMedCrossRefGoogle Scholar
  43. Rico CM, Barrios AC, Tan W, Rubenecia R, Lee SC, Varela-Ramirez A, Peralta-Videa JR, Gardea-Torresdey JL (2015) Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles. Environ Sci Pollut Res 22(14):10551–10558CrossRefGoogle Scholar
  44. Rosenzweig C, Iglesias A, Yang X-B, Epstein PR, Chivian E (2001) Climate change and extreme weather events; implications for food production, plant diseases, and pests. Glob Change Hum Health 2(2):90–104CrossRefGoogle Scholar
  45. Rui Y, Gui X, Li X, Liu S, Han Y (2014) Uptake, transport, distribution and bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. J Nanobiotechnol 12(1):50CrossRefGoogle Scholar
  46. Santos AR, Miguel AS, Tomaz L, Malhó R, Maycock C, Patto MCV, Fevereiro P, Oliva A (2010) The impact of CdSe/ZnS quantum dots in cells of Medicago sativa in suspension culture. J Nanobiotechnol 8(1):24CrossRefGoogle Scholar
  47. Shaw AK, Ghosh S, Kalaji HM, Bosa K, Brestic M, Zivcak M, Hossain Z (2014) Nano-CuO stress-induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.). Environ Exp Bot 102:37–47CrossRefGoogle Scholar
  48. Soliman S, El-Keblawy A, Mosa KA, Helmy M, Wani SH (2018) Understanding the phytohormones biosynthetic pathways for developing engineered environmental stress-tolerant crops. In: Biotechnologies of crop improvement, vol 2. Springer, Cham, pp 417–450CrossRefGoogle Scholar
  49. Song U, Jun H, Waldman B, Roh J, Kim Y, Yi J, Lee EJ (2013) Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf 93:60–67CrossRefGoogle Scholar
  50. Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I (2018) Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res Lett 13(1):44PubMedPubMedCentralCrossRefGoogle Scholar
  51. Sun Z, Xiong T, Zhang T, Wang N, Chen D, Li S (2019) Influences of zinc oxide nanoparticles on Allium cepa root cells and the primary cause of phytotoxicity. Ecotoxicology 28(2):175–188PubMedCrossRefGoogle Scholar
  52. Taylor AF, Rylott EL, Anderson CW, Bruce NC (2014) Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS One 9(4):e93793PubMedPubMedCentralCrossRefGoogle Scholar
  53. Thuesombat P, Hannongbua S, Akasit S, Chadchawan S (2014) Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol Environ Saf 104:302–309PubMedPubMedCentralCrossRefGoogle Scholar
  54. Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci 108(50):20260–20264PubMedCrossRefGoogle Scholar
  55. Vannini C, Domingo G, Onelli E, De Mattia F, Bruni I, Marsoni M, Bracale M (2014) Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. J Plant Physiol 171(13):1142–1148PubMedCrossRefGoogle Scholar
  56. Verma M, Jitendra M, Naveen KA (2019) Plant growth-promoting rhizobacteria: diversity and applications. In: Environmental biotechnology: for sustainable future. Springer, Singapore, pp 129–173Google Scholar
  57. Yang J, Cao W, Rui Y (2017) Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms. J Plant Interact 12(1):158–169CrossRefGoogle Scholar
  58. Yanık F, Vardar F (2015) Toxic effects of aluminum oxide (Al2O3) nanoparticles on root growth and development in Triticum aestivum. Water Air Soil Pollut 226(9):296CrossRefGoogle Scholar
  59. Zarayneh S, Sepahi AA, Jonoobi M, Rasouli H (2018) Comparative antibacterial effects of cellulose nanofiber, chitosan nanofiber, chitosan/cellulose combination and chitosan alone against bacterial contamination of Iranian banknotes. Int J Biol Macromol 118:1045–1054PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Medical Biology Research Center (MBRC)Kermanshah University of Medical ScienceKermanshahIran
  2. 2.Faculty of Agriculture, Department of Food Technology and BiochemistryUniversity of BelgradeBelgradeSerbia
  3. 3.Department of MicrobiologyPSGVP Mandal’s Arts, Science & Commerce CollegeShahadaIndia
  4. 4.Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
  5. 5.Faculty of ChemistryUniversity of MazandaranBabolsarIran
  6. 6.Research Department of Agronomy and Plant Breeding, Agricultural Research InstituteUniversity of ZabolZabolIran

Personalised recommendations