Advertisement

Nanomaterials: Scope, Applications, and Challenges in Agriculture and Soil Reclamation

  • T. M. Salem Attia
  • N. I. ElsheeryEmail author
Chapter
  • 44 Downloads
Part of the Sustainable Agriculture Reviews book series (SARV, volume 41)

Abstract

Nanotechnology has attracted scientists for study and exploitation of the unique physical, chemical and biological characteristics of nanomaterials. Nanomaterials are being developed for applications to a wide range of fields including medicine, drug delivery, electronics, fuel cells, solar cells, food preparation, and space exploration. Nanomaterials have already provided numerous benefits to agriculture – nanotechnology possesses the capability to detect and treat plant diseases, enhance photosynthetic rate and nutrient absorption by plants, deliver active ingredients to specific sites and treat water to remove contaminants. The potential of nanotechnology in agriculture and its effect on the planet is vast. This chapter will address the benefits of nanomaterials to agriculture and also to reclamation of disturbed lands.

Keywords

Nanotechnology Plant germination Pesticide detection Nano-fertilizers Land reclamation 

References

  1. Abdelouas A (2006) Uranium mill tailings: geochemistry, mineralogy, and environmental impact. Elements 2(6):335–341CrossRefGoogle Scholar
  2. Allen ER, Hossner LR, Ming DW, Henninger DL (1993) Solubility and cation exchange in phosphate rock and saturated clinoptilolite mixtures. Soil Sci Soc Am J 57(5):1368–1374PubMedCrossRefGoogle Scholar
  3. Andry H, Yamamoto T, Inoue M (2009) Influence of artificial zeolite and hydrated lime amendments on the erodibility of an acidic soil. Commun Soil Sci Plant Anal 40(7–8):1053–1072CrossRefGoogle Scholar
  4. Ankley GT, Di Toro DM, Hansen DJ, Berry WJ (1996) Technical basis and proposal for deriving sediment quality criteria for metals. Environ Toxicol Chem 15(12):2056–2066CrossRefGoogle Scholar
  5. Ashrafi SJ, Rastegar MF, Jafarpour B, Kumar SA (2010) Possibility use of silver nano particle for controlling Fusarium wilting in plant pathology. In: Riberio C, de-Assis OBG, Mattoso LHC, Mascarenas S (eds) Symposium of international conference on food and agricultural applications of nanotechnologies. São Pedro, SP, Brazil. ISBN 978-85-63274-02-4Google Scholar
  6. Auffan M, Decome L, Rose J, Orsiere T, De Meo M, Briois V, Chaneac C, Olivi L, Berge-Lefranc JL, Botta A, Wiesner MR, Bottero JY (2006) In vitro interactions between DMSA-coated maghemite nanoparticles and human fibroblasts: a physicochemical and cyto-genotoxical study. Environ Sci Technol 40(14):4367–4373PubMedCrossRefGoogle Scholar
  7. Baac H, Hajós JP, Lee J, Kim D, Kim SJ, Shuler ML (2006) Antibody-based surface plasmon resonance detection of intact viral pathogen. Biotechnol BioengBiotechnol Bioeng 94(4):815–819CrossRefGoogle Scholar
  8. Baalousha M (2009) Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter. Sci Total Environ 407(6):2093–2101PubMedCrossRefGoogle Scholar
  9. Baalousha M, Manciulea A, Cumberland S, Kendall K, Lead JR (2008) Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter. Environ Toxicol Chem 27(9):1875–1882PubMedCrossRefGoogle Scholar
  10. Balinova A, Mladenova R, Shtereva D (2007) Solid-phase extraction on sorbents of different retention mechanisms followed by determination by gas chromatographyemass spectrometric and gas chromatography-electron capture detection of pesticide residues in crops. J Chromatogr A 1150:136–144PubMedCrossRefGoogle Scholar
  11. Barbarick KA, Pirela HJ (1984) Agronomic and horticultural uses of zeolites: a review. In: Pond WG, Mumpton EA (eds) Zeo-agriculture. Use of natural zeolites in agriculture and aquaculture. Westview Press, Boulder, pp 93–104Google Scholar
  12. Basta NT, McGowen SL (2004) Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environ Pollut 127(1):73–82PubMedCrossRefGoogle Scholar
  13. Benoit JM, Gilmour CC, Mason RP, Heyes A (1999) Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. Environ Sci Technol 33(6):951–957CrossRefGoogle Scholar
  14. Bergeson LL (2010a) Nanosilver: US EPA’s pesticide office considers how best to proceed. Environ Qual Manag 19(3):79–85CrossRefGoogle Scholar
  15. Bergeson LL (2010b) Nanosilver pesticide products: what does the future hold? Environ Qual Manag 19(4):73–82CrossRefGoogle Scholar
  16. Bigham JM, Fitzpatrick RW, Schulze DG (2002) Iron oxides. In: Dixon JB, Schulze DG (eds) Soil mineralogy with environmental applications. Soil Science Society of America, Madison, pp 323–366Google Scholar
  17. Blodau C (2006) A review of acidity generation and consumption in acidic coal mine lakes and their watersheds. Sci Total Environ 369(1–3):307–332PubMedCrossRefGoogle Scholar
  18. Boettinger JL, Ming DW (2002) Zeolites. In: Dixon JB, Schulze DG (eds) Soil mineralogy with environmental applications, SSSA book series 7. Soil Science Society of America, Madison, pp 585–610Google Scholar
  19. Boonham N, Glover R, Tomlinson J, Mumford R (2008) Exploiting generic platform technologies for the detection and identification of plant pathogens. Eur J Plant Pathol 121:355–363CrossRefGoogle Scholar
  20. Bordes P, Pollet E, Avérous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci 34:125–155CrossRefGoogle Scholar
  21. Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, de Heer C, ten Voorde SECGS, Wijnhoven WP, Marvin HJP, Sips AJAM (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53:52–62PubMedCrossRefGoogle Scholar
  22. Burger JA, Zipper CE (2011) How to restore forests on surface-mined land Publication 460–123, Virginia Cooperative Extension (VCE), Stanardsville, Va, USAGoogle Scholar
  23. Butler EC, Hayes KF (1998) Effects of solution composition and pH on the reductive dechlorination of hexachloroethane by iron sulfide. Environ Sci Technol 32(9):1276–1284CrossRefGoogle Scholar
  24. Butler EC, Hayes KF (1999) Kinetics of the transformation of trichloroethylene and tetrachloroethylene by iron sulfide. Environ Sci Technol 33(12):2021–2027CrossRefGoogle Scholar
  25. Butler EC, Hayes KF (2001) Factors influencing rates and products in the transformation of trichloroethylene by iron sulfide and iron metal. Environ Sci Technol 35(19):3884–3891PubMedCrossRefGoogle Scholar
  26. Cao B, Ahmed B, Beyenal H (2010) Immobilization of uranium in groundwater using biofilms. In: Shah V (ed) Emerging environmental technologies, vol 2. Springer, New York, pp 1–37Google Scholar
  27. Carlino JL, Williams KA, Allen ER (1998) Evaluation of zeolite-based soilless root media for potted chrysanthemum production. HortTechnology 8(3):373–378CrossRefGoogle Scholar
  28. Chartuprayoon N, Rheem Y, Chen W, Myung NV (2010) Detection of plant pathogen using LPNE grown single conducting polymer nanoribbon. Abstract #2278, 218th ECS MeetingGoogle Scholar
  29. Chlopecka A, Adriano DC (1996) Mimicked in-situ stabilization of metals in a cropped soil: bioavailability and chemical form of zinc. Environ Sci Technol 30(11):3294–3303CrossRefGoogle Scholar
  30. Cifuentes Z, Custardoy L, de la Fuente JM, Marquina C, Ibarra MR, Rubiales D, Pérez-de-Luque A (2010) Absorption and translocation to the aerial part of magnetic carbon-coated nanoparticles through the roots of different crop plants. J Nanobiotechnol 8(26):1–8Google Scholar
  31. Coppola E, Battaglia G, Bucci M, Ceglie D, Colella A, Langella A, Buondonno A, Colella C (2003) Remediation of Cd- and Pb-polluted soil by treatment with organo-zeolite conditioner. Clays Clay Minerals 51(6):609–615CrossRefGoogle Scholar
  32. Corradini E, de Moura MR, Mattoso LHC (2010) A preliminary study of the incorparation of NPK fertilizer into chitosan nanoparticles. Express Polym Lett 4(8):509–515CrossRefGoogle Scholar
  33. Corrêa Jr JD, Rodrigues L, Lacerda RG, Ladeira LO (2010) Treatment of bean plants with carbon nanotubes conjugated INF24 antisense oligonucleotides reduce bean rust disease severity. In: Riberio C, de-Assis OBG, Mattoso LHC, Mascarenas S (eds) Symposium of international conference on food and agricultural applications of nanotechnologies. São Pedro, SP, Brazil. ISBN 978-85-63274-02-4Google Scholar
  34. Crane RA, Dickinson M, Popescu IC, Scott TB (2011) Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water. Water Res 45(9):2931–2942PubMedCrossRefGoogle Scholar
  35. Derosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5(2):91PubMedCrossRefGoogle Scholar
  36. Dickinson M, Scott TB (2010) The application of zero valent iron nanoparticles for the remediation of a uranium contaminated waste effluent. J Hazard Mater 178(1–3):171–179PubMedCrossRefGoogle Scholar
  37. Drott A, Lambertsson L, Bjorn E, Skyllberg U (2007) Importance of dissolved neutralmercury sulfides for methyl mercury production in contaminated sediments. Environ Sci Technol 41(7):2270–2276PubMedCrossRefGoogle Scholar
  38. Dyk JSV, Pletschke B (2011) Review on the use of enzymes for the detection of organochlorine, organophosphate and carbamate pesticides in the environment. Chemosphere 82:291–307PubMedCrossRefGoogle Scholar
  39. Eberl DD, Barbarick KA, Lai TM (1995) Influence of NH4-exchanged clinoptilolite on nutrient concentrations in sorghum-sudangrass. In: Ming DW, Mumpton FA (eds) Natural zeolites’93: occurrence, properties, use. Int’l Comm Natural Zeolites, Brockport, pp 491–504Google Scholar
  40. Edwards R, Rebedea I, Lepp NW, Lovell AJ (1999) An investigation into the mechanism by which synthetic zeolites reduce labile metal concentrations in soils. Environ Geochem Health 21(2):157–173CrossRefGoogle Scholar
  41. Eighmy TT, Crannell BS, Butler LG, Cartledge FK, Emery EF, Oblas D, Krzanowski JE, Eusden JD, Shaw EL, Francis CA (1997) Heavy metal stabilization in municipal solid waste combustion dry scrubber residue using soluble phosphate. Environ Sci Technol 31(11):3330–3338CrossRefGoogle Scholar
  42. FDA (2005) Glossary of pesticide chemicals. Available at: http://www.fda.gov/downloads/Food/FoodSafety/FoodContaminantsAdulteration/Pesticides/ucm114655.pdf. Accessed 31 Jan 2011
  43. Fiedor JN, Bostick WD, Jarabek RJ, Farrell J (1998) Understanding the mechanism of uranium removal from groundwater by zero- valent iron using X-ray photoelectron spectroscopy. Environ Sci Technol 32(10):1466–1473CrossRefGoogle Scholar
  44. Franco DV, Da Silva LM, Jardim WF (2009) Reduction of hexavalent chromium in soil and ground water using zerovalent iron under batch and semi-batch conditions. Water Air Soil Pollut 197(1–4):49–60CrossRefGoogle Scholar
  45. Gadepalle VP, Ouki SK, Van Herwijnen R, Hutchings T (2007) Immobilization of heavy metals in soil using natural and waste materials for vegetation establishment on contaminated sites. Soil Sediment Contam 16(2):233–251CrossRefGoogle Scholar
  46. Gallegos TJ, Sung PH, Hayes KF (2007) Spectroscopic investigation of the uptake of arsenite from solution by synthetic mackinawite. Environ Sci Technol 41(22):7781–7786PubMedCrossRefGoogle Scholar
  47. Gallegos TJ, Han YS, Hayes KF (2008) Model predictions of realgar precipitation by reaction of As (III) with synthetic mackinawite under anoxic conditions. Environ Sci Technol 42(24):9338–9343PubMedCrossRefGoogle Scholar
  48. Geebelen W, Vangronsveld J, Adriano DC, Carleer R, Clijsters H (2002) Amendment-induced immobilization of lead in a lead-spiked soil: evidence from phytotoxicity studies. Water Air Soil Pollut 140(1–4):261–277CrossRefGoogle Scholar
  49. Ghormade V, Deshpande MV, Paknikar KM (2010) Perspectives for nanobiotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803CrossRefGoogle Scholar
  50. Githinji LJM, Dane JH, Walker RH (2011) Physical and hydraulic properties of inorganic amendments andmodeling their effects on water movement in sand-based root zones. Irrig Sci 29(1):65–77CrossRefGoogle Scholar
  51. Grieger KD, Fjordbøge A, Hartmann NB, Eriksson E, Bjerg PL, Baun A (2010) Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? J Contam Hydrol 118(3–4):165–183PubMedCrossRefPubMedCentralGoogle Scholar
  52. Grillo R, Melo NFS, de Lima R, Lourenço RW, Rosa AH, Fraceto LF (2010) Characterization of atrazine-loaded biodegradable poly(hydroxybutyrate-cohydroxyvalerate) microspheres. J Polym Environ 18:26–32CrossRefGoogle Scholar
  53. Guan H, Chi D, Yu J, Li H (2010) Dynamics of residues from a novel nanoimidacloprid formulation in soyabean fields. Crop Prot 29:942–946CrossRefGoogle Scholar
  54. Haidouti C (1997) Inactivation of mercury in contaminated soils using natural zeolites. Sci Total Environ 208(1–2):105–109PubMedCrossRefPubMedCentralGoogle Scholar
  55. He F, Zhao D (2005) Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ Sci Technol 39(9):3314–3320PubMedCrossRefGoogle Scholar
  56. He F, Zhao D (2007) Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol 41(17):6216–6221PubMedCrossRefGoogle Scholar
  57. He ZL, Baligar VC, Martens DC, Ritchey KD, Elrashidi M (1999) Effect of byproduct, nitrogen fertilizer, and zeolite on phosphate rock dissolution and extractable phosphorus in acid soil. Plant Soil 208(2):199–207CrossRefGoogle Scholar
  58. He YT, Wan J, Tokunaga T (2008) Kinetic stability of hematite nanoparticles: the effect of particle sizes. J Nanopart Res 10(2):321–332CrossRefGoogle Scholar
  59. Hong Y, Honda RJ, Myung NV, Walker SL (2009) Transport of iron-based nanoparticles: role of magnetic properties. Environ Sci Technol 43(23):8834–8839PubMedCrossRefGoogle Scholar
  60. Hu JD, Zevi Y, Kou XM, Xiao J, Wang XJ, Jin Y (2010) Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions. Sci Total Environ 408(16):3477–3489PubMedCrossRefGoogle Scholar
  61. Hua B, Deng B (2008) Reductive immobilization of uranium( VI) by amorphous iron sulfide. Environ Sci Technol 42(23):8703–8708PubMedCrossRefGoogle Scholar
  62. Hua M, Zhang S, Pan B, Zhang W, Li L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211-212:317–331PubMedCrossRefGoogle Scholar
  63. Huang ZT, Petrovic AM (1995) Physical properties of sand as affected by clinoptilolite zeolite particle size and quantity. J Turfgrass Manag 1(1):1–15CrossRefGoogle Scholar
  64. Hussein MZb, Yahaya AH, Zainal Z, Kian LH (2005) Nanocomposite-based controlled release formulation of an herbicide, 2,4-dichlorophenoxyacetate incapsulated in zincealuminium-layered double hydroxide. Sci Technol Adv Mater 6:956–962CrossRefGoogle Scholar
  65. Hyung H, Fortner JD, Hughes JB, Kim JH (2007) Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol 41(1):179–184PubMedCrossRefGoogle Scholar
  66. IFOAM (2011) IFOAM position paper on “The use of nanotechnologies and nanomaterials in organic agriculture”. Available at: http://www.ifoam.org/press/positions/IFOAMPositionPaperNanotech2011_Approved.pdf. Accessed 3 Jan 2012
  67. Jacinthe PA, Lal R (2007) Carbon storage and minesoil properties in relation to topsoil application techniques. Soil Sci Soc Am J 71(6):1788–1795CrossRefGoogle Scholar
  68. Jaisi DP, Elimelech M (2009) Single-walled carbon nanotubes exhibit limited transport in soil columns. Environ Sci Technol 43(24):9161–9166PubMedCrossRefPubMedCentralGoogle Scholar
  69. Jaisi DP, Saleh NB, Blake RE, Elimelech M (2008) Transport of single-walled carbon nanotubes in porous media: filtration mechanisms and reversibility. Environ Sci Technol 42(22):8317–8323PubMedCrossRefPubMedCentralGoogle Scholar
  70. Jiang L, Gao L, Sun J (2003) Production of aqueous colloidal dispersions of carbon nanotubes. J Colloid Interface Sci 260(1):89–94PubMedCrossRefGoogle Scholar
  71. Jianhui Y, Kelong H, Yuelong W, Suqin L (2005) Study on anti-pollution nanopreparation of dimethomorph and its performance. Chin Sci Bull 50(2):108–112CrossRefGoogle Scholar
  72. Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39(5):1291–1298PubMedCrossRefGoogle Scholar
  73. Kanel SR, Greneche JM, Choi H (2006) Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40(6):2045–2050PubMedCrossRefGoogle Scholar
  74. Kang TF, Wang F, Lu LP, Zhang Y, Liu TS (2010) Methyl parathion sensors based on gold nanoparticles and Nafion film modified glassy carbon electrodes. Sensor Actuat B-Chem 145:104–109CrossRefGoogle Scholar
  75. Karlsson HL, Gustafsson J, Cronholm P, M¨oller L (2009) Size-dependent toxicity of metal oxide particles-A comparison between nano- and micrometer size. Toxicol Lett 188(2):112–118PubMedCrossRefGoogle Scholar
  76. Katz LE, Humphrey DN, Jankauskas PT, Demascio FA (1996) Engineered soils for low-level radioactive waste disposal facilities: effects of additives on the adsorptive behavior and hydraulic conductivity of natural soils. Hazard Waste Hazard Mater 13(2):283–306CrossRefGoogle Scholar
  77. Khan AA, Akhtar T (2011) Adsorption thermodynamics studies of 2,4,5-trichlorophenoxy acetic acid on poly-o-toluidine Zr(IV) phosphate, a nanocomposite used as pesticide sensitive membrane electrode. Desalination 272:259–264CrossRefGoogle Scholar
  78. Khan H, Khan AZ, Khan R, Matsue N, Henmi T (2009) Influence of zeolite application on germination and seedquality of soybean grown on allophanic soil. Res J Seed Sci 2(1):1–8CrossRefGoogle Scholar
  79. Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10):3221–3227PubMedPubMedCentralCrossRefGoogle Scholar
  80. Knox AS, Kaplan DI, Adriano DC, Hinton TG, Wilson MD (2003) Apatite and phillipsite as sequestering agents for metals and radionuclides. J Environ Qual 32(2):515–525PubMedCrossRefGoogle Scholar
  81. Knox AS, Kaplan DI, Paller MH (2006) Phosphate sources and their suitability for remediation of contaminated soils. Sci Total Environ 357(1–3):271–279PubMedCrossRefGoogle Scholar
  82. Kuang H, Chen W, Yan W, Xu L, Zhu Y, Liu L, Chu H, Peng C, Wang L, Kotov NA, Xua C (2011) Crown ether assembly of gold nanoparticles: melamine sensor. Biosens Bioelectron 26:2032–2037PubMedCrossRefGoogle Scholar
  83. Kumaravel A, Chandrasekaran M (2011) A biocompatible nano TiO2/nafion composite modified glassy carbon electrode for the detection of fenitrothion. J Electroanal Chem 650:163–170CrossRefGoogle Scholar
  84. Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments-a review. Waste Manag 28(1):215–225PubMedCrossRefGoogle Scholar
  85. Lai TM, Eberl DD (1986) Controlled and renewable release of phosphorous in soils from mixtures of phosphate rock and NH4-exchanged clinoptilolite. Zeolites 6(2):129–132CrossRefGoogle Scholar
  86. Lal R (2008) Promise and limitations of soils to minimize climate change. J Soil Water Conserv 63(4):113A–118ACrossRefGoogle Scholar
  87. Lemly AD (1997) Environmental implications of excessive selenium: a review. Biomed Environ Sci 10(4):415–435PubMedGoogle Scholar
  88. Lewis D, Moore IFD, Goldsberry KL (1984) Ammonium- exchanged clinoptilolite and granulated clinoptilolite with urea as nitrogen fertilizers. In: Pond WG, Mumpton FA (eds) Zeo-agriculture: use of natural zeolites in agriculture and aquaculture. Westview Press, Boulder, pp 105–111Google Scholar
  89. Li XQ, Zhang WX (2006) Iron nanoparticles: the core-shell structure and unique properties for Ni(II) sequestration. Langmuir 22(10):4638–4642PubMedCrossRefGoogle Scholar
  90. Li XQ, Zhang WX (2007) Sequestration of metal cations with zerovalent iron nanoparticles: a study with high resolution x-ray photoelectron spectroscopy (HR-XPS). J Phys Chem C 111(19):6939–6946CrossRefGoogle Scholar
  91. Li YH, Ding J, Luan Z, Di Z, Zhu Y, Xu C, Wu D, We B (2003) Competitive adsorption of Pb2+, Cu2+ and Cd 2+ ions from aqueous solutions by multi walled carbon nanotubes. Carbon 41(14):2787–2792CrossRefGoogle Scholar
  92. Li C, Wang C, Hua S (2006) Development of a parathion sensor based on molecularly imprinted nano-TiO2 self-assembled film electrode. Sensor Actuat B-Chem 117:166–171CrossRefGoogle Scholar
  93. Li XQ, Brown DG, Zhang WX (2007) Stabilization of biosolids with nanoscale zero-valent iron (nZVI). J Nanopart Res 9(2):233–243CrossRefGoogle Scholar
  94. Lima AC, Ceragioli HJ, Cardoso KC, Peterlevitz AC, Zanin HG, Baranauskas V, Silva MJ (2010) Synthesis and application of carbon nanostructures on the germination of tomato seeds. In: Riberio C, de-Assis OBG, Mattoso LHC, Mascarenas S (eds) Symposium of international conference on food and agricultural applications of nanotechnologies. São Pedro, SP, Brazil. ISBN 978-85-63274-02-4Google Scholar
  95. Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41(11):4158–4163PubMedPubMedCentralCrossRefGoogle Scholar
  96. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250PubMedPubMedCentralCrossRefGoogle Scholar
  97. Lin CF, Lo SS, Lin HY, Lee Y (1998) Stabilization of cadmium contaminated soils using synthesized zeolite. J Hazard Mater 60(3):217–226CrossRefGoogle Scholar
  98. Liu R (2011) In-situ lead remediation in a shoot-range soil using stabilized apatite nanoparticles. In: Proceedings of the 85th ACS colloid and surface science symposium. McGill University, MontrealGoogle Scholar
  99. Liu R, Lal R (2012) A laboratory study on improvement of mine soil quality for re-vegetation through various amendments. In: Proceedings of the ASA-CSSA-SSSA international annual meetings. CincinnatiGoogle Scholar
  100. Liu R, Zhao D (2007) Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate nanoparticles. Water Res 41(12):2491–2502PubMedCrossRefGoogle Scholar
  101. Liu F, Wen L-X, Li Z-Z, Yu W, Sun H-Y, Chen JF (2006) Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Mater Res Bull 41:2268–2275CrossRefGoogle Scholar
  102. Liu S, Yuan L, Yue X, Zheng Z, Tang Z (2008) Recent advances in nanosensors for organophosphate pesticide detection. Adv Powder Technol 19:419–441CrossRefGoogle Scholar
  103. Liu J, Valsaraj KT, Delaune RD (2009) Inhibition of mercury methylation by iron sulfides in an anoxic sediment. Environ Eng Sci 26(4):833–840CrossRefGoogle Scholar
  104. Lopez Z, Bawazir AS, Tanzy B, Adkins E (2008) Using St. Cloud clinoptilolite zeolite as a wicking material to sustain riparian vegetation. In: Proceedings of the 2008 joint meeting of the geological society of America, soil science society of America, American society of agronomy, crop science society of America, Gulf Coast association of geological societies with the Gulf Coast section of SEPM. Paper No. 54- 6Google Scholar
  105. López MM, Llop P, Olmos A, Marco-Noales E, Cambra M, Bertolini E (2009) Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses? Curr Issues Mol Biol 11:13–46PubMedGoogle Scholar
  106. Lu C, Liu C (2006) Removal of nickel (II) from aqueous solution by carbon nanotubes. J Chem Technol Biotechnol 81(12):1932–1940CrossRefGoogle Scholar
  107. Lu W, Senapati D, Wang S, Tovmachenko O, Singh AK, Yu H, Ray PC (2010) Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes. Chem Phys Lett 487:92–96CrossRefGoogle Scholar
  108. Lyons K, Scrinis G (2009) Under the regulatory radar? Nanotechnologies and their impacts for rural Australia. In: Merlan F, Raftery D (eds) Tracking rural change: community, policy and technology in Australia, New Zealand and Europe. Australian National University E Press, Canberra, pp 151–171Google Scholar
  109. Ma QY, Logan TJ, Traina SJ (1995) Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks. Environ Sci Technol 29(4):1118–1126PubMedCrossRefGoogle Scholar
  110. Mackowiak CL, Amacher MC (2008) Soil sulfur amendments suppress selenium uptake by alfalfa and western wheatgrass. J Environ Qual 37(3):772–779PubMedCrossRefGoogle Scholar
  111. Mahmoodabadi MR (2010) Experimental study on the effects of natural zeolite on lead toxicity, growth, nodulation, and chemical composition of soybean. Commun Soil Sci Plant Anal 41(16):1896–1902CrossRefGoogle Scholar
  112. Masciangioli T, Zhang WX (2003) Environmental technologies at the nanoscale. Environ Sci Technol 37(5):102A–108APubMedCrossRefGoogle Scholar
  113. Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42(16):5843–5859PubMedCrossRefGoogle Scholar
  114. Mohamed MM, Khairou KS (2011) Preparation and characterization of nanosilver/mesoporous titania photocatalysts for herbicide degradation. Microporous Mesoporous Mater 142:130–138CrossRefGoogle Scholar
  115. Moirou A, Xenidis A, Paspaliaris I (2001) Stabilization Pb, Zn, and Cd-contaminated soil by means of natural zeolite. Soil Sediment Contam 10(3):251–267CrossRefGoogle Scholar
  116. Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62(2):161–165CrossRefGoogle Scholar
  117. Moore JN, Ficklin WH, Johns C (1988) Partitioning of arsenic and metals in reducing sulfidic sediments. Environ Sci Technol 22(4):432–437CrossRefGoogle Scholar
  118. Mumpton FA (1985) Using zeolites in agriculture. In: Innovative biological technologies for lesser developed countries, congress of the United States. Office of Technology Assessment, Washington, DCGoogle Scholar
  119. Nair R, Poulose AC, Nagaoka Y, Yoshida Y, Maekawa T, Sakthi Kumar D (2011) Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolabels for plants. J Fluoresc 21:2057–2068PubMedPubMedCentralCrossRefGoogle Scholar
  120. Naturland (2011) Naturland standards for organic aquaculture. Available at: http://www.naturland.de/fileadmin/MDB/documents/Richtlinien_englisch/Naturland-Standards_Aquaculture.pdf. Accessed 3 Jan 2012.
  121. Nissen LR, Lepp NW, Edwards R (2000) Synthetic zeolites as amendments for sewage sludge-based compost. Chemosphere 41(1–2):265–269PubMedCrossRefGoogle Scholar
  122. Niu H, Cai Y (2012) Adsorption and concentration of organic contaminants by carbon nanotubes from environmental samples. In: Kim J (ed) Advances in Nanotechnology and the Environment. Pan Stanford Publishing, Singapore, pp 79–136Google Scholar
  123. NNI (National Nanotechnology Initiative) (2005) What is nanotechnology? Accessed July (2005). http://www.nano.gov
  124. O’Carroll D, Sleep B, Krol M, Boparai H, Kocur C (2013) Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv Water Resour 51:104–122CrossRefGoogle Scholar
  125. O’Connell MJ, Boul P, Ericson LM, Huffman C, Wang Y, Haroz E, Kuper C, Tour J, Ausman KD, Smalley RE (2001a) Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett 342(3–4):265–271CrossRefGoogle Scholar
  126. Ming DW, Allen ER (2001) Use of natural zeolites in agronomy, horticulture and environmental soil remediation. In: Ming DW, Bish DB (eds) Natural zeolites: occurrence, properties, applications. Mineralogical Society of America, Geochemical Society/Italian National Academy, Accademia Nationale dei Lincei (ANL), Saint Louis/Barcelonartd, pp 619–654CrossRefGoogle Scholar
  127. O’Connell MJ, Boul P, Ericson LM, Huffman C, Wang Y, Haroz E, Kuper C, Tour J, Ausman KD, Smalley RE (2001b) Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett 342(3–4):265–271CrossRefGoogle Scholar
  128. Oancea S, Padureanu S, Oancea AV (2009) Growth dynamics of corn plants during anionic clays action. In: Lucr_ari S¸ tiint¸ ifice, vol. 52. seria AgronomieGoogle Scholar
  129. Olegario JT, Yee N, Miller M, Sczepaniak J, Manning B (2010) Reduction of Se (VI) to Se(II) by zero-valent iron nanoparticle suspensions. J Nanopart Res 12(6):2057–2068CrossRefGoogle Scholar
  130. Ovenden C, Xiao H (2002) Flocculation behaviour and mechanisms of cationic inorganic microparticle/polymer systems. Colloids Surf A 197(1–3):225–234CrossRefGoogle Scholar
  131. Pabalan RT, Bertetti FP (2001) Cation-exchange properties of natural zeolites. In: Bish DL, Ming DW (eds) Natural zeolites: occurrence, properties, applications, vol 45. Mineralogical Society of America Reviews in Mineralogy and Geochemistry, Washington, DC, pp 453–518CrossRefGoogle Scholar
  132. Parham H, Rahbar N (2010) Square wave voltammetric determination of methyl parathion using ZrO2-nanoparticles modified carbon paste electrode. J Hazard Mater 177:1077–1084PubMedCrossRefPubMedCentralGoogle Scholar
  133. Patterson RR, Fendorf S, Fendorf M (1997) Reduction of hexavalent chromium by amorphous iron sulfide. Environ Sci Technol 31(7):2039–2044CrossRefGoogle Scholar
  134. Peld M, Kaia Tõnsuaadu K, Bend V (2004) Sorption and desorption of Cd2+ and Zn2+ ions in apatite-aqueous systems. Environ Sci Technol 38(21):5626–5631PubMedCrossRefPubMedCentralGoogle Scholar
  135. Perez-de-Luque A, Cifuentes Z, Beckstead J, Sillero JC, Àvila C, Rubio J, Ryan RO (2012) Effect of amphotericin B nanodisks on plant fungal diseases. Pest Manag Sci 68:67–74PubMedCrossRefPubMedCentralGoogle Scholar
  136. Perrin TS, Drost DT, Boettinger JL, Norton JM (1998) Ammonium-loaded clinoptilolite: a slow-release nitrogen ertilizer for sweet corn. J Plant Nutr 21(3):515–530CrossRefGoogle Scholar
  137. Petrovic AM (1990) The potential of natural zeolite as a soil amendment. Golf Course Manage 58(11):92–93Google Scholar
  138. Phenrat T, Saleh N, Sirk K, Kim HJ, Tilton RD, Lowry GV (2008) Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanopart Res 10(5):795–814CrossRefGoogle Scholar
  139. Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34(12):2564–2569CrossRefGoogle Scholar
  140. Qu F, Zhou X, Xu J, Li H, Xie G (2009) Luminescence switching of CdTe quantum dots in presence of p-sulfonatocalix[4]arene to detect pesticides in aqueous solution. Talanta 78:1359–1363PubMedCrossRefGoogle Scholar
  141. Raicevic S, Kaludjerovic-Radoicic T, Zouboulis AI (2005) In situ stabilization of toxic metals in polluted soils using phosphates: theoretical prediction and experimental verification. J Hazard Mater 117(1):41–53PubMedCrossRefGoogle Scholar
  142. Raicevic S, Wright JV, Veljkovic V, Conca JL (2006) Theoretical stability assessment of uranyl phosphates and apatites: selection of amendments for in situ remediation of uranium. Sci Total Environ 355(1–3):13–24PubMedCrossRefPubMedCentralGoogle Scholar
  143. Rao GP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58(1):224–231CrossRefGoogle Scholar
  144. Reinsch BC, Forsberg B, Penn RL, Kim CS, Lowry GV (2010) Chemical transformations during aging of zero valent iron nanoparticles in the presence of common groundwater dissolved constituents. Environ Sci Technol 44(9):3455–3461PubMedCrossRefGoogle Scholar
  145. Renock D, Gallegos T, Utsunomiya S, Hayes K, Ewing RC, Becker U (2009) Chemical and structural characterization of As immobilization by nanoparticles of mackinaw wite (FeSm). Chem Geol 268(1–2):116–125CrossRefGoogle Scholar
  146. Revis NW, Osborne TR, Holdsworth G, Hadden C (1989) Distribution of mercury species in soil from a mercury contaminated site. Water Air Soil Pollut 45(1–2):105–113Google Scholar
  147. Reynolds CS, Davies PS (2001) Sources and bioavailability of phosphorus fractions in freshwaters: a British perspective. Biol Rev Camb Philos Soc 76(1):27–64PubMedCrossRefGoogle Scholar
  148. Riba O, Scott TB, Vala Ragnarsdottir K, Allen GC (2008) Reaction mechanism of uranyl in the presence of zero-valent iron nanoparticles. Geochim Cosmochim Acta 72(16):4047–4057CrossRefGoogle Scholar
  149. Ruby MV, Davis A, Nicholson A (1994) In situ formation of lead phosphates in soils as a method to immobilize lead. Environ Sci Technol 28(4):646–654PubMedCrossRefGoogle Scholar
  150. Sakulchaicharoen N, O’Carroll DM, Herrera JE (2010) Enhanced stability and dechlorination activity of presynthesis stabilized nanoscale FePd particles. J Contam Hydrol 118(3–4):117–127PubMedCrossRefGoogle Scholar
  151. Saleh N, Kim H, Phenrat T, Matyjaszewski K, Tilton RD, Lowry GV (2008) Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environ Sci Technol 42(9):3349–3355PubMedCrossRefGoogle Scholar
  152. Scrinis G, Lyons K (2010) Nanotechnology and the techno-corporate agri-food paradigm. In: Lawrence G, Lyons K, Wallington T (eds) Food security, nutrition and sustainability. Earthscan, London (Chapter 16)Google Scholar
  153. Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197:143–148CrossRefGoogle Scholar
  154. Shanableh A, Kharabsheh A (1996) Stabilization of Cd, Ni and Pb in soil using natural zeolite. J Hazard Mater 45(2–3):207–217CrossRefGoogle Scholar
  155. Shi W-J, Shi W-W, Gao S-Y, Lu Y-T, Cao Y-S, Zhou P (2010) Effects of anopesticide chlorfenapyr on mice. Toxicol Environ Chem 92:1901–1907CrossRefGoogle Scholar
  156. Shi X, Sun K, Balogh LP, Baker JR (2006) Synthesis, characterization, and manipulation of dendrimer-stabilized iron sulfide nanoparticles. Nanotechnology 17:4554–4560CrossRefGoogle Scholar
  157. Shipley HJ, Engates KE, Guettner AM (2011) Study of iron oxide nanoparticles in soil for remediation of arsenic. J Nanopart Res 13(6):2387–2397CrossRefGoogle Scholar
  158. Sicbaldi F, Sarra A, Mutti D, Bo PF (1997) Use of gas-liquid chromatography with electron-capture and thermionic-sensitive detection for the quantitation and identification of pesticide residues. J Chromatogr AJ Chromatogr A 765:13–22CrossRefGoogle Scholar
  159. Singh D, Singh SC, Kumar S, Lal B, Singh NB (2010) Effect of titanium dioxide nanoparticles on the growth and biochemical parameters of Brassica oleracea. In: Riberio C, de-Assis OBG, Mattoso LHC, Mascarenas S (eds) Symposium of international conference on food and agricultural applications of nanotechnologies. São Pedro, SP, Brazil. ISBN 978-85-63274-02-4Google Scholar
  160. Stan HJ, Linkerhägner M (1996) Pesticide residue analysis in foodstuffs applying capillary gas chromatography with atomic emission detection state-of-the-art use of modified multimethod S19 of the Deutsche Forschungsgemeinschaft and automated large-volume injection with programmed-temperature vaporization and solvent venting. J Chromatogr AJ Chromatogr A 750:369–390CrossRefGoogle Scholar
  161. Stanforth R, Qiu J (2001) Effect of phosphate treatment on the solubility of lead in contaminated soil. Environ Geol 41(1–2):1–10CrossRefGoogle Scholar
  162. Stead K (2002) Environmental implications of using the natural zeolite clinoptilolite for the remediation of sludge amended soils. PhD thesis, University of Surrey, Surrey, UKGoogle Scholar
  163. Sun H, Fung Y (2006) Piezoelectric quartz crystal sensor for rapid analysis of pirimicarb residues using molecularly imprinted polymers as recognition elements. Anal Chim ActaAnal Chim Acta 576:67–76CrossRefGoogle Scholar
  164. Theron J, Walker JA, Cloete TE (2008) Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol 34(1):43–69PubMedCrossRefGoogle Scholar
  165. Thomas P, Irvine J, Lyster J, Beaulieu R (2005) Radionuclides and trace metals in Canadian moose near uranium mines: comparison of radiation doses and food chain transfer with cattle and caribou. Health Phys 88(5):423–438PubMedCrossRefGoogle Scholar
  166. Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1(2):44–48CrossRefGoogle Scholar
  167. Turan NG (2008) The effects of natural zeolite on salinity level of poultry litter compost. Bioresour Technol 99(7):2097–2101PubMedCrossRefGoogle Scholar
  168. USDA (2010) USDA pesticide data program analytical methods. Available at: http://www.ams.usda.gov/AMSv1.0/getfile?dDocName¼STELPRDC5049940. Accessed 29 Jan 2011Google Scholar
  169. USEPA (2007) The use of soil amendments for remediation, revitalization and reuse. Solid Waste and Emergency Response (5203P) EPA 542-R-07-013, http://clu-in.org/download/remed/epa-542-r-07-013.pdf
  170. USEPA, US Environmental Protection Agency Region 10 (2001) Consensus plan for soil and sediment studies: Coeurd’Alene river soils and sediments bioavailability studies (URS DCN: 4162500.06161.05.a. EPA:16.2), pp. 1–16. http://yosemite.epa.gov/R10/CLEANUP.NSF/fb6a4e3291f5d28388256-d140051048b/503bcd6aa1bd60a288256cce00070286/$FILE/soil amend consensus final 022801.PDF, 2012
  171. Vamvakaki V, Chaniotakis NA (2007) Pesticide detection with a liposome-based nano-biosensor. Biosens Bioelectron 22:2848–2853PubMedCrossRefGoogle Scholar
  172. Villase˜nor J, Rodriguez L, Fernandez FJ (2011) Composting domestic sewage sludge with natural zeolites in a rotary drum reactor. Bioresour Technol 102(2):1447–1454CrossRefGoogle Scholar
  173. Viswanathan S, Radecka H, Radecki J (2009) Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nanotubes wrapped with ssDNA. Biosens Bioelectron 24:2772–2777PubMedCrossRefGoogle Scholar
  174. Wang M, Li Z (2008) Nano-composite ZrO2/Au film electrode for voltammetric detection of parathion. Sensor Actuat B-Chem 133:607–612CrossRefGoogle Scholar
  175. Wang ZS, Hung MT, Liu JC (2007) Sludge conditioning by using alumina nanoparticles and polyelectrolyte. Water Sci Technol 56(8):125–132PubMedCrossRefGoogle Scholar
  176. Wang Z, Wei F, Liu SY, Xu Q, Huang J-Y, Dong XY, Yua JH, Yang Q, Zhao YD, Chen H (2010) Electrocatalytic oxidation of phytohormone salicylic acid at copper nanoparticles-modified gold electrode and its detection in oilseed rape infected with fungal pathogen Sclerotinia sclerotiorum. Talanta 80:1277–1281PubMedCrossRefGoogle Scholar
  177. Watanabe T, Murata Y, Nakamura T, Sakai Y, Osaki M (2009) Effect of zero-valent iron application on cadmium uptake in rice plants grown in cadmium-contaminated soils. J Plant Nutr 32(7):1164–1172CrossRefGoogle Scholar
  178. Wehtje GR, Shaw JN, Walker RH, Williams W (2003) Bermudagrass growth in soil supplemented with inorganic amendments. HortScience 38(4):613–617CrossRefGoogle Scholar
  179. Williams KA, Nelson PV (1997) Using precharged zeolite as a source of potassium and phosphate in a soilless container medium during potted chrysanthemumproduction. J Am Soc Hortic Sci 122(5):703–708CrossRefGoogle Scholar
  180. Witte ST, Will LA (1993) Investigation of selenium sourcesassociated with chronic selenosis in horses of western Iowa. J Vet Diagn Investig 5(1):28–131Google Scholar
  181. Wolthers M, Charlet L, van Der Weijden CH, van der Linde PR, Rickard D (2005) Arsenic mobility in the ambient sulfidic environment: sorption of arsenic(V) and arsenic(III) onto disordered mackinawite. Geochim Cosmochim Acta 69(14):3483–3492CrossRefGoogle Scholar
  182. Xenidis A, Stouraiti C, Papassiopi N (2010) Stabilization of Pb and As in soils by applying combined treatment with phosphates and ferrous iron. J Hazard Mater 177(1–3):929–937PubMedCrossRefGoogle Scholar
  183. Xiong Z, He F, Zhao D, Barnett MO (2009) Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles. Water Res 43(20):5171–5179PubMedCrossRefGoogle Scholar
  184. Xu L, Liu Y, Bai R, Chen C (2010) Applications and toxicological issues surrounding nanotechnology in the food industry. Pure Appl Chem 82:349–372CrossRefGoogle Scholar
  185. Xu Y, Zhao D (2007) Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Res 41(10):2101–2108PubMedCrossRefGoogle Scholar
  186. Xueying L, O’Carroll DM, Petersen EJ, Qingguo H, Anderson CL (2009) Mobility of multiwalled carbon nanotubes in porous media. Environ Sci Technol 43(21):8153–8158CrossRefGoogle Scholar
  187. Yamamoto T, Yuya A, Satoh A, Takahasi H, Sumikoshi M, DeghaniSanij H, Agassi M (2004) Application of artificial zeolite to combat soil erosion. In: Proceedings of the American society of agricultural engineers, Canadian society for engineering of agricultural, food and biological system annual international meeting, Government Centre Ottawa, Ontario, Canada, AugustGoogle Scholar
  188. Yan S, Hua B, Bao Z, Yang J, Liu C, Deng B (2010) Uranium (VI) removal by nanoscale zerovalent iron in anoxic batch systems. Environ Sci Technol 44(20):7783–7789PubMedCrossRefGoogle Scholar
  189. Yan Z, Deng Y (2000) Cationic microparticle based flocculation and retention systems. Chem Eng J 80(1–3):31–36CrossRefGoogle Scholar
  190. Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY, Chiu CY, Liao CY, Hsu JJ, Lin ZP (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv Mater Res 79,82:513–516CrossRefGoogle Scholar
  191. Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5(3–4):323–332CrossRefGoogle Scholar
  192. Zhao Y-G, Shen H-Y, Shi J-W, Chen X-H, Jin MC (2011) Preparation and characterization of amino functionalized nano-composite material and its application for multi-residue analysis of pesticides in cabbage by gas chromatographyetriple quadrupole mass spectrometry. J Chromatogr A 1218:5568–5580PubMedCrossRefGoogle Scholar
  193. Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–91PubMedPubMedCentralCrossRefGoogle Scholar
  194. Zheng M (2011) A technology for enhanced control of erosion, sediment and metal leaching at disturbed land using polyacrylamide and magnetite nanoparticles [M.S. thesis], Auburn University, Auburn, Ala, USAGoogle Scholar
  195. Zhou X, Shu L, Zhao H, Guo X, Wang X, Tao S, Xing B (2012) Suspending multi-walled carbon nanotubes by humic acids from a peat soil. Environ Sci Technol 46(7):3891–3897PubMedCrossRefGoogle Scholar
  196. Zorpas AA, Constantinides T, Vlyssides AG, Haralambous I, Loizidou M (2000) Heavy metal uptake by natural zeolite and metals partitioning in sewage sludge compost. Bioresour Technol 72(2):113–119CrossRefGoogle Scholar
  197. Zorpas AA, Loizidou M (2008) Sawdust and natural zeolite as a bulking agent for improving quality of a composting product from anaerobically stabilized sewage sludge. Bioresour Technol 99(16):7545–7552PubMedCrossRefGoogle Scholar
  198. Zorpas AA, Vassilis I, Loizidou M, Grigoropoulou H (2002) Particle size effects on uptake of heavy metals from sewage sludge compost using natural zeolite clinoptilolite. J Colloid Interface Sci 250(1):1–4PubMedCrossRefGoogle Scholar
  199. Zorpas AA, Vlyssides AG, Loizidou M (1999) Dewatered anaerobically-stabilized primary sewage sludge composting: metal leachability and uptake by natural clinoptilolite. Commun Soil Sci Plant Anal 30(11–12):1603–1613CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Soils, Water and Environment Research InstituteAgricultural Research CenterGizaEgypt
  2. 2.Agriculture Botany Department, Faculty of AgricultureTanta UniversityTantaEgypt

Personalised recommendations