Advertisement

Distributed Query Evaluation over Large RDF Graphs

  • Peng PengEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11809)

Abstract

RDF is increasingly being used to encode data for the semantic web and data exchange. There have been a large number of studies that address RDF data management over different distributed platforms. In this paper we provide an overview of these studies. This paper divide the studies of existing distributed RDF systems into two categories: partitioning-based approaches and cloud-based approaches. We also introduce a partition-tolerant distributed RDF system, gStore\(^D\).

Keywords

Distributed RDF systems SPARQL query evaluation Partial evaluation 

Notes

Acknowledgment

This work was supported by NSFC under grant 61702171, Hunan Provincial Natural Science Foundation of China under grant 2018JJ3065, and the Fundamental Research Funds for the Central Universities.

References

  1. 1.
    Abdelaziz, I., Harbi, R., Khayyat, Z., Kalnis, P.: A survey and experimental comparison of distributed SPARQL engines for very large RDF data. PVLDB 10(13), 2049–2060 (2017)Google Scholar
  2. 2.
    Google: Freebase data dumps (2017)Google Scholar
  3. 3.
    He, L., et al.: Stylus: a strongly-typed store for serving massive RDF data. PVLDB 11(2), 203–216 (2017)Google Scholar
  4. 4.
    Huang, J., Abadi, D.J., Ren, K.: Scalable SPARQL querying of large RDF graphs. PVLDB 4(11), 1123–1134 (2011)Google Scholar
  5. 5.
    Kaoudi, Z., Manolescu, I.: RDF in the clouds: a survey. VLDB J. 24(1), 67–91 (2015)CrossRefGoogle Scholar
  6. 6.
    Karypis, G., Kumar, V.: Multilevel graph partitioning schemes. In: ICPP, pp. 113–122 (1995)Google Scholar
  7. 7.
    Lehmann, J., et al.: DBpedia - a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 6(2), 167–195 (2015)Google Scholar
  8. 8.
    Madkour, A., Aly, A.M., Aref, W.G.: WORQ: workload-driven RDF query processing. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 583–599. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00671-6_34CrossRefGoogle Scholar
  9. 9.
    Mahdisoltani, F., Biega, J., Suchanek, F.M.: YAGO3: a knowledge base from multilingual Wikipedias (2015)Google Scholar
  10. 10.
    Peng, P., Zou, L., Chen, L., Zhao, D.: Query workload-based RDF graph fragmentation and allocation. In: EDBT, pp. 377–388 (2016)Google Scholar
  11. 11.
    Peng, P., Zou, L., Chen, L., Zhao, D.: Adaptive distributed RDF graph fragmentation and allocation based on query workload. IEEE Trans. Knowl. Data Eng. 31(4), 670–685 (2019)CrossRefGoogle Scholar
  12. 12.
    Peng, P., Zou, L., Guan, R.: Accelerating partial evaluation in distributed SPARQL query evaluation. In: ICDE, pp. 112–123 (2019)Google Scholar
  13. 13.
    Peng, P., Zou, L., Özsu, M.T., Chen, L., Zhao, D.: Processing SPARQL queries over distributed RDF graphs. VLDB J. 25(2), 243–268 (2016)CrossRefGoogle Scholar
  14. 14.
    Schätzle, A., Przyjaciel-Zablocki, M., Skilevic, S., Lausen, G.: S2RDF: RDF querying with SPARQL on spark. PVLDB 9(10), 804–815 (2016)Google Scholar
  15. 15.
    Shao, B., Wang, H., Li, Y.: Trinity: a distributed graph engine on a memory cloud. In: SIGMOD, pp. 505–516 (2013)Google Scholar
  16. 16.
    Wu, B., Zhou, Y., Yuan, P., Liu, L., Jin, H.: Scalable SPARQL querying using path partitioning. In: ICDE, pp. 795–806 (2015)Google Scholar
  17. 17.
    Wylot, M., Mauroux, P.: DiploCloud: efficient and scalable management of RDF data in the cloud. TKDE, PP(99) (2015) Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Hunan UniversityChangshaChina

Personalised recommendations