Advertisement

Role and Characterization of Nano-Based Membranes for Environmental Applications

  • Oluranti Agboola
  • Rotimi Sadiku
  • Patricia Popoola
  • Samuel Eshorame Sanni
  • Peter Adeniyi Alaba
  • Daniel Temitayo Oyekunle
  • Victoria Oluwaseun Fasiku
  • Mukuna Patrick Mubiayi
Chapter
  • 53 Downloads
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 42)

Abstract

Environmental issues emerge as a result of the harmful effects of human activities from different points of sources on biophysical environment. Lots of environmental damages can be rectified. The prevention of further damage can be achieved through the utilization of membrane separation processes. The utilization of membrane separation process to combat environmental pollution illustrates the application of membrane materials to effectively prevent environmental pollution in a sustainable manner. Nano-based membranes usually fabricated from organic polymer-based nanocomposites have proven to be promising membrane separation technology for environmental issues. In this report, we reviewed the role and characterizations of nano-based membranes for environmental applications. Thus, the major points are, firstly, factors influencing nano-based membranes performance and, secondly, important characterization techniques commonly used in characterizing the surface of membranes fabricated with the incorporation of nanomaterials. Thirdly, we reviewed the models used in characterizing the transport properties across nano-based membranes since these properties are principally controlled by the surface layer, thickness, porosity, and pore size. Finally, the environmental applications of nano-based membranes are reviewed.

Keywords

Nano-based membranes Gas separation Desalination Solid pollution Air pollution Solution diffusion model Extended Nernst–Planck model Pathogens Transport properties membrane self-cleaning 

Nomenclature

NF

Nanofiltration

Vp

Permeate volume

RO

Reverse osmosis

%R

Percentage rejection

SEM

Scanning electron microscopy

J

Flux

AFM

Atomic force microscopy

Ci, m 

Bulk feed concentration

CNT

Carbon nanotube

Ci, p

Permeate concentration

DE

Dielectric exclusion

zi

Valence of ion (i)

DSPM

Donnan–steric partitioning pore model

Di, p

Hindered diffusivity (m2/s)

TEM

Transmission electron microscope

γSV

Solid–vapor interfacial energy

XRD

X-ray powder diffractometer

γSL

Solid–liquid interfacial energy

PSCF

Preferential sorption/capillary flow

γLV

Liquid–vapor interfacial energy

FTIR

Fourier-transform infrared

θγ

Equilibrium contact angle

T

Absolute temperature (K)

Ki, c

Convection hindrance factor

ci

Concentration of ions in the membrane (mol/m3)

F

Faraday constant (C/mol)

ϕ

Equilibrium partition coefficient

ψ

Electrical potential (V)

R

Universal gas constant (J/mol.K)

Dsm

Diffusion coefficient

cT

Total molar concentration

x

Membrane thickness

Ks

Solute distribution coefficient

APAN

Aminated polyacrylonitrile

MWCNTs

Multi-walled carbon nanotubes

Xd

Effective charge density

rP

Pore radius

e

Electronic charge

εb

Dielectric constant of the bulk

YSZ

yttrium-stabilized zirconia

εm

Dielectric constant of the membrane material

GO

Graphene oxide

εp

Dielectric constant inside the pores

CM

ceramic membranes

DSPM-DE

Donnan–steric partitioning pore model with dielectric exclusion

References

  1. Abdallah H, Shalaby MS, Shaban AMH (2015) Performance and characterization for blend membrane of PES with Manganese (III) Acetylacetonate as metalorganic nanoparticles. Int J Chem Eng:1–9.  https://doi.org/10.1155/2015/896486 CrossRefGoogle Scholar
  2. Abdel-Fatah MA (2018) Nanofiltration systems and applications in wastewater treatment: review article. Ain Shams Eng J 9(4):3077–3092CrossRefGoogle Scholar
  3. Abdelrasoul A, Doan H, Lohi A (2013) Fouling in membrane filtration and remediation methods. In: Mass transfer – advances in sustainable energy and environment oriented numerical modeling. Intech, RijekaGoogle Scholar
  4. Abhang RM, Wani KS, Patil VS, Pangarkar BL, Parjane SB (2013) Nanofiltration for recovery of heavy metal ions from waste water - a review. Int J Res Environ Sci Technol 3(1):29–34Google Scholar
  5. Abidi A, Gherraf N, Ladjel S, Rabiller-Baudry M, Bouchami T (2016) Effect of operating parameters on the selectivity of nanofiltration phosphates transfer through a Nanomax-50 membrane. Arabian J Chem 9:S334–S341.  https://doi.org/10.1016/j.arabjc.2011.04.014 CrossRefGoogle Scholar
  6. Adams C, Wang Y, Loftin K, Meyer M (2002) Removal of antibiotics from surface and distilled water in conventional water treatment processes. J Environ Eng 128(3):253–260CrossRefGoogle Scholar
  7. Afsari M, Asghari M, Moghaddam PM (2017) Synthesis and characterization of supported Phenolic resin/Carbon nanotubes Carbon membranes for gas separation. Int J Nano Dimens 8(4):316–328Google Scholar
  8. Agashichev SP (2009) Modeling the influence of temperature on gel-enhanced concentration polarization in reverse osmosis. Desalination 236(1–3):252–258.  https://doi.org/10.1016/j.desal.2007.10.074 CrossRefGoogle Scholar
  9. Agboola O, Maree J, Mbaya R (2014) Characterization and performance of nanofiltration membranes: review. Environ Chem Lett 12:241–255.  https://doi.org/10.1007/s10311-014-0457-3 CrossRefGoogle Scholar
  10. Agboola O, Mokrani T, Sadiku ER, Kolesnikov A, Olukunle OI, Maree JP (2017) Characterization of two nanofiltration membranes for the separation of ions from acid mine Water. Mine Water Environ 36:401–408.  https://doi.org/10.1007/s10230-016-0427-z CrossRefGoogle Scholar
  11. Ahmad AL, Ooi BS, Mohammad AW, Choudhury JP (2004) Development of a highly hydrophilic nanofiltration membrane for desalination and water treatment. Desalination 168(1-3):215–221CrossRefGoogle Scholar
  12. Ahn CH, Baek Y, Lee C, Kim SO, Kim S, Lee S, Kim S-H, Bae SS, Park J, Yoon J (2012) Carbon nanotube-based membranes: fabrication and application to desalination. J Ind Eng Chem 18(5):1551–1559CrossRefGoogle Scholar
  13. Al-Sheetan KM, Shaik MR, AL-Hobaib AS, Alandis NM (2015) Characterization and evaluation of the improved performance of modified reverse osmosis membranes by incorporation of various organic modifiers and SnO2 nanoparticles. J Nanomater 2015:1–11.  https://doi.org/10.1155/2015/363175 CrossRefGoogle Scholar
  14. Amin MT, Alazba AA (2014) A review of nanomaterials based membranes for removal of contaminants from polluted waters. Membr Water Treat 5(2):123–146.  https://doi.org/10.12989/mwt.2014.5.2.123 CrossRefGoogle Scholar
  15. Amin TA, Alazba AA, Manzoor U (2014) A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng 2014:1–24CrossRefGoogle Scholar
  16. Amouamouha M, Gholikandi GB (2017) Characterization and antibiofouling performance investigation of hydrophobic silver nanocomposite membranes: a comparative study. Membranes (Basel) 7(64):1–16.  https://doi.org/10.3390/membranes7040064 CrossRefGoogle Scholar
  17. Aravind SV, Kathirasen R (2017) Air pollution control using membrane technique. Int J Adv Res Civil, Struct, Environ Infrast Eng Dev 3(1):322–327Google Scholar
  18. Ariono KD, Wenten SIG (2017) Surface modification of ion-exchange membranes: Methods, characteristics, and performance. J Appl Polym Sci 2017:1–13Google Scholar
  19. Aroon MA, Ismail AF, Matsuura T, Montazer-Rahmati MM (2010) Performance studies of mixed matrix membranes for gas separation: a review. Sep Purif Technol 75:229–242.  https://doi.org/10.1016/j.seppur.2010.08.023 CrossRefGoogle Scholar
  20. Ávila AF, de Oliveira AM, Lacerda GRDS, Munhoz VC, Santos MCG, Santos PF, Triplett M (2013) A nano-modified superhydrophobic membrane. Mater Res 16(3):609–613.  https://doi.org/10.1590/S1516-14392013005000028 CrossRefGoogle Scholar
  21. Bakajin O, Noy A, Fornasiero F, Grigoropoulus JK, Holt JB, Kim IS, Park HG (2009) Nanofluidic carbon nanotube membranes: applications for water purification and desalination. In: Savage et al (eds) . Willian Andrew Inc./Elsevier, New York, pp 77–93Google Scholar
  22. Baker RW (2004) Membrane technology and applications, 2nd edn. John Wiley & Sons Ltd, ChichesterCrossRefGoogle Scholar
  23. Baker RW, Lokhandwala K (2008) Natural gas processing with membranes: an overview. Ind Eng Chem Res 47:2109–2121CrossRefGoogle Scholar
  24. Balta S, Sotto A, Luis P, Benea L, Van der Bruggen B, Kim J (2012) A new outlook on membrane enhancement with nanoparticles: the alternative of ZnO. J Membr Sci 389:155–161.  https://doi.org/10.1016/j.memsci.2011.10.025 CrossRefGoogle Scholar
  25. Banerjee S, Dionysiou DD, Pillai SC (2015) Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl Catal B Environ 176–177:396–428CrossRefGoogle Scholar
  26. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8CrossRefGoogle Scholar
  27. Battirola LC, Gasparotto LHS, Rodrigues-Filho UP, Tremiliosi-Filho G (2012) Poly(imide)/organically-modified montmorillonite nanocomposite as a potential membrane for alkaline fuel cells. Membranes (Basel) 2:430–439.  https://doi.org/10.3390/membranes2030430 CrossRefGoogle Scholar
  28. Beril Gonder Z, Arayici S, Barlas H (2011) Advanced treatment of pulp and paper mill wastewater by nanofiltration process: effects of operating conditions on membrane fouling. Sep Purif Technol 76:292–302.  https://doi.org/10.1016/j.seppur.2010.10.018 CrossRefGoogle Scholar
  29. Binas V, Venieri D, Kotzias D, Kiriakidis G (2017) Modified TiO2 based photocatalysts for improved air and health quality. J Materiomics 3:3–16CrossRefGoogle Scholar
  30. Bodzek M (2000) Mebrane techniques in air cleaning. Polish J Environ Studies 9(1): 1–12Google Scholar
  31. Bodzek M, Dudziak M, Luks-Betlej K (2004) Application of membrane techniques to water purification. Removal of phthalates. Desalination 162(1–3):121–128CrossRefGoogle Scholar
  32. Bolong N, Ismail AF, Salim MR, Matsuura T (2009) A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 238(1–3):229–246CrossRefGoogle Scholar
  33. Boussu K, Van der Bruggen B, Volodin A, Snauwaert J, Van Haesendonck C, Vandecasteele C (2005) Roughness and hydrophobicity studies of nanofiltration membranes using different modes of AFM. J Colloid Interface Sci 286:632–638.  https://doi.org/10.1016/j.jcis.2005.01.095 CrossRefGoogle Scholar
  34. Bowen WR, Mohammad AW (1998) A theoretical basis for specifying nanofiltration membranes-dye/salt/water streams. Desalination 8(1-3):257–264.  https://doi.org/10.1016/S0011-9164(98)00112-X CrossRefGoogle Scholar
  35. Bowen WR, Mukhtar H (1996) Characterisation and prediction of separation performance of nanofiltration membranes. J Membr Sci 112:263–274.  https://doi.org/10.1016/0376-7388(95)00302-9 CrossRefGoogle Scholar
  36. Brady-Estévez AS, Kang S, Elimelech M (2008) A single-walled-carbon-nanotube filter for removal of viral and bacterial pathogens. Small 4(4):481–484.  https://doi.org/10.1002/smll.200700863 CrossRefGoogle Scholar
  37. Camacho LM, Dumée L, Zhang J, Li JD, Duke M, Gomez J, Gray S (2013) Advances in membrane distillation for water desalination and purification applications. Water 5:94–196CrossRefGoogle Scholar
  38. Carré A (2007) Polar interactions at liquid/polymer interfaces. J Adhes Sci Technol 21(10):961–981.  https://doi.org/10.1163/156856107781393875 CrossRefGoogle Scholar
  39. Cassano A (2017) Recovery technologies for water-soluble bioactives: advances in membrane-based processes. In: Engineering foods for bioactives stability and delivery, Food engineering series. Springer Science+Business Media, New York, p 64Google Scholar
  40. Chadar SN, Chadar K (2017) Solid waste pollution: a hazard to environment. Recent Adv Petrochem Sci 2(3):1–3Google Scholar
  41. Chen W, Chen S, Liang T, Zhang Q, Fan Z, Yin H, Huang K-W, Zhang X, Lai Z, Sheng P (2018) High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes. Nat Nanotechnol 13:345–350CrossRefGoogle Scholar
  42. Cheng W, Campolongo MJ, Tan SJ, Luo D (2009) Freestanding ultrathin nano-membranes via self-assembly: review. Nano Today 4:482–493.  https://doi.org/10.1016/j.nantod.2009.10.005 CrossRefGoogle Scholar
  43. Chung T-S, Jiang LY, Li Y, Kulprathipanja S (2007) Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog Polym Sci 32:483–507.  https://doi.org/10.1016/j.progpolmsci.2007.01.008 CrossRefGoogle Scholar
  44. Clarity AB (2009) Pathogen removal from water technologies and techniques. Filtration + separation: water and wastewater: Dexmet corporation. http://www.filtsep.com/water-and-wastewater/features/pathogen-removal-from-water-technologies-and/. Assessed 20 Oct 2018
  45. Corry B (2008) Designing carbon nanotube membranes for efficient water desalination. J Phys Chem B112(5):1427–1434CrossRefGoogle Scholar
  46. Dalwani M, Benes NE, Bargeman G, Stamatialis D, Wessling M (2011) Effect of pH on the performance of polyamide/polyacrylonitrile based thin film composite membranes. J Membr Sci 372:228–238.  https://doi.org/10.1016/j.memsci.2011.02.012 CrossRefGoogle Scholar
  47. Das R (2017) Nanohybrid catalyst based on carbon nanotube: a step by step guideline from preparation to demonstration. Springer International Publishing, Cham, p 41CrossRefGoogle Scholar
  48. Das R, Ali ME, Hamid SBA, Ramakrishna S, Chowdhury ZZ (2014) Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination 336:97–109CrossRefGoogle Scholar
  49. de Sousa FDB, de Engenharia CHSC, Aplicadas MCS (2014) The use of atomic force microscopy as an important technique to analyze the dispersion of nanometric fillers and morphology in nanocomposites and polymer blends based on elastomers. Polímeros 24(6):661–672.  https://doi.org/10.1590/0104-1428.1648 CrossRefGoogle Scholar
  50. De J, Cooper VR, Dai S (2009) Porous graphene as the ultimate membrane for gas separation. Nano Lett 9(12):4019–4024.  https://doi.org/10.1021/nl9021946 CrossRefGoogle Scholar
  51. Dewettinck K, Le TT, Nguyen VB (2018) Membrane separations. In: Alternatives to conventional food processing, 2nd edn. Royal Society of Chemistry, LondonGoogle Scholar
  52. Dickinson RE, Cicerone RJ (1986) Future global warning from atmospheric trace gases. Nature 319:109–115CrossRefGoogle Scholar
  53. Dihua W, Xuesong L, Sanchuan Y, Meihong L, Congjie G (2010) Modification of aromatic polyamide thin-film composite reverse osmosis membranes by surface coating of thermo-responsive copolymers P(NIPAM-co-Am). I: preparation and characterization. J Membr Sci 352:76–85.  https://doi.org/10.1016/j.memsci.2010.01.061 CrossRefGoogle Scholar
  54. Dong L-X, Yang H-W, Liu S-T, Wang X-M, Xie YF (2015) Fabrication and anti-biofouling properties of alumina and zeolite nanoparticle embedded ultrafiltration membranes. Desalination 365:70–78CrossRefGoogle Scholar
  55. Du H, Li J, Zhang J, Su G, Li X, Zhao Y (2011) Separation of hydrogen and nitrogen gases with porous graphene membrane. J Phys Chem C 115(47):23261–23266.  https://doi.org/10.1021/jp206258u CrossRefGoogle Scholar
  56. Elaine Fung Y-L, Wang H (2013) Investigation of reinforcement of porous alumina by nickel aluminate spinel for its use as ceramic membrane. J Membr Sci 444:252–258.  https://doi.org/10.1016/j.memsci.2013.05.025 CrossRefGoogle Scholar
  57. El-Arnaouty MB, Abdel Ghaffar AM, Eid M, Aboulfotouh ME, Taher NH, Soliman E-S (2018) Nano-modification of polyamide thin film composite reverse osmosis membranes by radiation grafting. J Radiation Res Appl Sci:1–13.  https://doi.org/10.1016/j.jrras.2018.01.005 CrossRefGoogle Scholar
  58. Elia P, Nativ-Roth E, Zeiri Y, Porat Z (2016) Determination of the average pore-size and total porosity in porous silicon layers by image processing of SEM micrographs. Microporous Mesoporous Mater 225:465–471.  https://doi.org/10.1016/j.micromeso.2016.01.007 CrossRefGoogle Scholar
  59. Elimelech M, Phillip WA (2011) The future of seawater desalination: energy, technology, and the environment. Science 333(6043):712–717CrossRefGoogle Scholar
  60. Elnashaie SS, Danafar F, Rafsanjani HH (2015) Nanotechnology for chemical engineers. Springer, Singapore, p 104CrossRefGoogle Scholar
  61. Fadaei F, Hoshyargar V, Shirazian S, Ashrafizadeh AN (2012) Mass transfer simulation of ion separation by nanofiltration considering electrical and dielectrical effects. Desalination 284:316–323CrossRefGoogle Scholar
  62. Fard AK, McKay G, Buekenhoudt A, Al Sulaiti H, Motmans F, Khraisheh M, Atieh M (2018) Inorganic membranes: preparation and application for water treatment and desalination-review. Materials 11(74):1–47.  https://doi.org/10.3390/ma11010074 CrossRefGoogle Scholar
  63. Frank GK (2007) Industrial gas handbook: gas separation and purification. CRC Press, New York, pp 275–280Google Scholar
  64. Gallucci F, Basile A, Hai FI (2011) Introduction-a review of membrane reactors. In: Membranes for membrane reactors: preparation, optimization and selection. Wiley, ChichesterGoogle Scholar
  65. Gellé A, Moores A (2017) Water splitting catalyzed by titanium dioxide decorated with plasmonic nanoparticles. Pure Appl Chem 89(12):1817–1827CrossRefGoogle Scholar
  66. Genne I, Kuypers S, Leysen R (1996) Effect of the addition of ZrO2 to polysulfone based UF membranes. J Membr Sci 113:343–350CrossRefGoogle Scholar
  67. Ghaemi N (2016) A new approach to copper ion removal from water by polymeric nanocomposite membrane embedded with γ-alumina nanoparticles. Appl Surf Sci 364:221–228.  https://doi.org/10.1016/j.apsusc.2015.12.109 CrossRefGoogle Scholar
  68. Ghaemi N, Madaeni SS, Alizadeh A, Rajabi H, Daraei P (2011) Preparation, characterization and performance of polyethersulfone/organically modified montmorillonite nanocomposite membranes in removal of pesticides. J Membr Sci 382:135–147.  https://doi.org/10.1016/j.memsci.2011.08.004 CrossRefGoogle Scholar
  69. Goh PS, Ng BC, Lau WJ, Ismail AF (2014) Inorganic nanomaterials in polymeric ultrafiltration membranes for water treatment. Sep Purif Rev 44(3):216–249CrossRefGoogle Scholar
  70. Goosen MFA, Sablani SS, Al-Maskari SS, Al-Belushi RH, Wilf M (2002) Effect of feed temperature on permeate flux and mass transfer coefficient in spiral-wound reverse osmosis systems. Desalination 144:367–372.  https://doi.org/10.1016/S0011-9164(02)00345-4 CrossRefGoogle Scholar
  71. Gozálvez-Zafrilla JM, Santafé-Moros A (2008) Nanofiltration modeling based on the extended nernst-planck equation under different physical modes. In: Excerpt from the proceedings of the COMSOL conference 2008 Hannover, GermanyGoogle Scholar
  72. Gozálvez-Zafrilla JM, Gómez-Martínez B, Santafé-Moros A (2005) Evaluation of nanofiltration processes for brackish water treatment using the dspm model. In: European symposium on computer aided process engineering – 15Google Scholar
  73. Griffin JW (Product Manager, Tetratec) (2018) High temperature filtration media in incineration. http://www.seas.columbia.edu/earth/wtert/sofos/nawtec/nawtec07/nawtec07-07.pdf. Accessed 7 Nov 2018
  74. Gunawan P, Guan C, Song X, Zhang Q, Leong SSJ, Tang C, Chen Y, Chan-Park MB, Chang MW, Wang K, Xu R (2011) Hallow fiber membrane decorated with Ag/MWCNTs: toward effective water disinfection and biofouling control. ACS Nano 5(12):10033–10040CrossRefGoogle Scholar
  75. Hamzah N, Leo CP (2017) Membrane distillation of saline with phenolic compound using superhydrophobic PVDF membrane incorporated with TiO2 nanoparticles: separation, fouling and self-cleaning evaluation. Desalination 418:79–88CrossRefGoogle Scholar
  76. Hasanuzzaman M, Rashid ARMH, Olabi AG (2017) Characterization of porous glass and ceramics by mercury intrusion porosimetry. Ref Mod Mater Sci Mater Eng.  https://doi.org/10.1016/B978-0-12-803581-8.09266-3 Google Scholar
  77. He Y, Li G, Wang H, Zhao J, Su H, Huang Q (2008) Effect of operating conditions on separation performance of reactive dye solution with membrane process. J Membr Sci 321(2):183–189.  https://doi.org/10.1016/j.memsci.2008.04.056 CrossRefGoogle Scholar
  78. Herterich JG, Griffiths IM, Field RW, Vella D (2014) The effect of a concentration-dependent viscosity on particle transport in a channel flow with porous walls. AIChE J 60(5):1891–1904CrossRefGoogle Scholar
  79. Hidalgo AM, Leȯn G, Gȯmez M, Murcia MD, Barbosa DS, Blanco P (2013) Application of the solution-diffusion model for the removal of atrazine using a nanofiltration membrane. Desalin Water Treat 51(10–12):2244–2252.  https://doi.org/10.1080/19443994.2012.734720 CrossRefGoogle Scholar
  80. Hilal N, AI-Zoubi H, Darwish NA, Mohammad AW (2005) Characterisation of nanofiltration membranes using atomic force microscopy. Desalination 177:187–199.  https://doi.org/10.1016/j.desal.2004.12.008 CrossRefGoogle Scholar
  81. Hilal N, Ismail AF, Matsuura T, Oatley-Radcliffe D (2017) Membrane characterization, 1st edn. Elsevier, AmsterdamGoogle Scholar
  82. Hinds BJ, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas LG (2004) Aligned multiwalled carbon nanotube membranes. Science 303(5654):62–65CrossRefGoogle Scholar
  83. Ho WSW, Sirkar KK (1992) Membrane handbook, vol 1. Springer Science, New YorkCrossRefGoogle Scholar
  84. Hoang T, Stevens G, Kentish S (2010) The effect of feed pH on the performance of a reverse osmosis membrane. Desalination 261:99–103.  https://doi.org/10.1016/j.desal.2010.05.024 CrossRefGoogle Scholar
  85. Homayoonfal M, Mehrnia MR, Shariaty-Niassar M, Akbari A, Sarrafzadeh MH, Ismail AF (2015) Fabrication of magnetic nanocomposite membrane for separation of organic contaminant from water. Desalin Water Treat 54(13):3603–3609CrossRefGoogle Scholar
  86. Huang FL, Wang QQ, Wei QF, Gao WD, Shou HY, Jiang SD (2010) Dynamic wettability and contact angles of poly(vinylidene fluoride) nanofiber membranes grafted with acrylic acid. Express Polym Lett 4(9):551–558.  https://doi.org/10.3144/expresspolymlett.2010.69 CrossRefGoogle Scholar
  87. Hussain S, Amade R, Jover E, Bertran E (2012) Functionalization of carbon nanotubes by water plasma. Nanotechnology 23(38):385604CrossRefGoogle Scholar
  88. Ihsanullah (2019) Carbon nanotube membranes for water purification: Developments, challenges, and prospects for the future. Sep Purif Technol 209:307–337CrossRefGoogle Scholar
  89. Isawia H, El-Sayeda MH, Xianshe F, Hosam S, Abdel Mottaleb MS (2016) Surface nanostructuring of thin film composite membranes via grafting polymerization and incorporation of ZnO nanoparticles. Appl Surf Sci 385:268–281.  https://doi.org/10.1016/j.apsusc.2016.05.141 CrossRefGoogle Scholar
  90. Izadpanah AA, Javidnia A (2012) The ability of a nanofiltration membrane to remove hardness and ions from diluted seawater. Water 4:283–294CrossRefGoogle Scholar
  91. Jang JH, Lee J, Jung S-Y, Choi D-C, Won Y-J, Ahn KY, Park PY, Lee CH (2015) Correlation between particle deposition and the size ratio of particles to patterns in nano- and micro-patterned membrane filtration systems. Sep Purif Technol 156:608–616.  https://doi.org/10.1016/j.seppur.2015.10.056 CrossRefGoogle Scholar
  92. Jhaveri JH, Murthy ZVP (2016) A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination 379:137–154CrossRefGoogle Scholar
  93. Jian X, Dai Y, He G, Chen G (1999) Preparation of UF and NF poly (phthalazine ether sulfone ketone) membranes for high temperature application. J Membr Sci 161(1-2):185–191.  https://doi.org/10.1016/S0376-7388(99)00112-X CrossRefGoogle Scholar
  94. Jiang CY, Rybak BM, Markutsya S, Kladitis PE, Tsukruk VV (2005) Self-recovery of stressed nanomembranes. Appl Phys Lett 86(12):121912–121913.  https://doi.org/10.1063/1.1889239 CrossRefGoogle Scholar
  95. Jiang C, Kommireddy DS, Tsukruk VV (2006) Gradient array of freely suspended nanomembranes. Adv Funct Mater 16:27–32.  https://doi.org/10.1002/adfm.200500326 CrossRefGoogle Scholar
  96. Johnson DJ, Al Malek SA, Al-Rashdi BAM, Hilal N (2012) Atomic force microscopy of nanofiltration membranes: effect of imaging mode and environment. J Membr Sci 389:486–498.  https://doi.org/10.1016/j.memsci.2011.11.023 CrossRefGoogle Scholar
  97. Johnson DJ, Oatley-Radcliffe DL, Hilal N (2018) State of the art review on membrane surface characterization: visualisation, verification and quantification of membrane properties. Desalination 434:12–36.  https://doi.org/10.1016/j.desal.2017.03.023 CrossRefGoogle Scholar
  98. Kadam VV, Wang L, Padhye R (2016) Electrospun nanofibre materials to filter air pollutants - a review. J Ind Text 47(8):2253–2280CrossRefGoogle Scholar
  99. Kanagalakshmi AS, Sharankumar A, Shenbagavalli E, Tamilpriya S, Durga P (2018) Nanotechnology in water purification. J Mech Civil Eng 15(1):47–52.  https://doi.org/10.9790/1684-1501024752 CrossRefGoogle Scholar
  100. Kanani DM, Fissell WH, Roy S, Dubnisheva A, Fleischman A, Zydney AL (2010) Permeability-selectivity analysis for ultrafiltration: effect of pore geometry. J Membr Sci 349:405–410.  https://doi.org/10.1016/j.memsci.2009.12.003 CrossRefGoogle Scholar
  101. Kang M, Jung R, Kim HS, Jin HJ (2008) Preparation of superhydrophobic polystyrene membranes by electrospinning. Colloid Surf A 313:411–414CrossRefGoogle Scholar
  102. Kar S, Bindal RC, Tewari PK (2012) Carbon nanotube membranes for desalination and water purification: challenges and opportunities. Nano Today 7(5):385–389.  https://doi.org/10.1016/j.nantod.2012.09.002 CrossRefGoogle Scholar
  103. Kegel FS, Rietman BM, Verliefde ARD (2010) Reverse osmosis followed by activated carbon filtration for efficient removal of organic micropollutants from river bank filtrate. Water Sci Technol 6(10):2603–2610.  https://doi.org/10.2166/wst.2010.166 CrossRefGoogle Scholar
  104. Kennes C, Rene ER, Veiga MC (2009) Bioprocesses for air pollution control. J Chem Technol Biotechnol 84(10):1419–1436.  https://doi.org/10.1002/jctb.2216 CrossRefGoogle Scholar
  105. Khulbe KC, Feng CY, Matsuura TS (2008) Synthetic polymeric membranes characterization by atomic force microscopy. Springer, Berlin, p 17Google Scholar
  106. Khulbe CK, Feng CY, Matsuura T (2010) Membrane characterization. In: Desalination and water resources: membrane processes, vol II. Eolss Publishers/UNESCO, Oxford, p 140Google Scholar
  107. Kim J, Van der Bruggen B (2010) The use of nanoparticles and nanotubes in polymeric and ceramic membrane structures: review of envisaged performance improvements for water treatment. Environ Pollut 158(7):2335–2349.  https://doi.org/10.1016/j.envpol.2010.03.024 CrossRefGoogle Scholar
  108. Kim ES, Liu Y, Gamal El-Din M (2013) An in-situ integrated system of carbon nanotubes nanocomposite membrane for oil sands process-affected water treatment. J Membr Sci 429:418–427CrossRefGoogle Scholar
  109. Kim KS, Moon DS, Kim HJ, Lee SW, Ji H, Jung HJ, Won HJ (2014) The effect of feed temperature on permeate flux during membrane separation. J Korean Soc Mar Environ Energy 17(1):13–19.  https://doi.org/10.7846/JKOSMEE.2014.17.1.13 CrossRefGoogle Scholar
  110. Kiso Y, Kon T, Kitao T, Nishimura K (2001) Rejection properties of alkyl phthalates with nanofiltration membranes. J Membr Sci 182(1-2):205–214CrossRefGoogle Scholar
  111. Konruang S, Chittrakarn T, Sirijarukul S (2014) Surface modification of asymmetric polysulfone membrane by UV irradiation. J Teknol 70:55–60.  https://doi.org/10.11113/jt.v70.3435 CrossRefGoogle Scholar
  112. Kotrappanavar NS, Hussain AA, Abashar MEE, Al-Mutaz IS, Aminabhavi TM, Nadagouda MN (2011) Prediction of physical properties of nanofiltration membranes for neutral and charged solutes. Desalination 3:174–181CrossRefGoogle Scholar
  113. Kowalik-Klimczak A, Zalewski M, Gierycz P (2016) Removal of Cr(III) ions from salt solution by nanofiltration: experimental and modelling analysis. Polish J Chem Technol 18(3):10–16.  https://doi.org/10.1515/pjct-2016-0042 CrossRefGoogle Scholar
  114. Kumar J, Bansal A (2013) Photocatalysis by nanoparticles of titanium dioxide for drinking water purification: a conceptual and state-of-art review. Mater Sci Forum 764:30–150CrossRefGoogle Scholar
  115. Kumar SR, Gopinath P (2016) Dual applications of silver nanoparticles incorporated functionalized MWCNTs grafted surface modified PAN nanofibrous membrane for water purification. RSC Adv 6:109241–109252CrossRefGoogle Scholar
  116. Labbez C, Fievet P, Szymczyk A, Vidonne A, Foissy A, Pagetti J (2002) Analysis of the salt retention of a titania membrane using the ‘DSPM’ model: effect of pH, salt concentration and nature. J Membr Sci 208(3):15–3290Google Scholar
  117. Ladewig B, Al-Shaeli MNZ (2017) Fundamentals of membrane processes. In: Fundamentals of membrane bioreactors. Springer Nature Singapore, SingaporeCrossRefGoogle Scholar
  118. Lanteri Y, Fievet P, Szymczyk A (2009) Evaluation of the steric, electric, and dielectric exclusion model on the basis of salt rejection rate and membrane potential measurements. J Colloid Interface Sci 331:148–155CrossRefGoogle Scholar
  119. Lee J-W, Yoo Y-T, Lee JY (2015) Characterization of nafion nanocomposites with spheric silica, layered silicate, and amphiphilic organic molecule and their actuator application. Macromol Res 23(2):167–176.  https://doi.org/10.1007/s13233-015-3029-x CrossRefGoogle Scholar
  120. Levchenko I, Han Z-J, Kumar S, Yick S, Fang J, Ostrikov K (2013) Large arrays and networks of carbon nanotubes: morphology control by process parameters. In: Syntheses and applications of carbon nanotubes and their composites. Intech, RijekaGoogle Scholar
  121. Li NN, Fane AG, Winston WS, Matsuura T (2008) Advanced membrane technology and applications. John Wiley & Sons, Inc., HobokenCrossRefGoogle Scholar
  122. Li L, Sokol N, Eigil JG, Etchells VM (2012) Nanoporous polymers for membrane applications. Department of Chemical Engineering, Technical University of Denmark, Kgs.LyngbyGoogle Scholar
  123. Li L, Song C, Jiang D, Wang T (2017a) Preparation and enhanced gas separation performance of carbon/carbon nanotubes (C/CNTs) hybrid membranes. Sep Purif Technol 188:73–80CrossRefGoogle Scholar
  124. Li SH, Huang JY, Chen Z, Chen GQ, Lai YK (2017b) A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. J Mater Chem A 5:31–55CrossRefGoogle Scholar
  125. Lu GQ, Zhao XS (2004) Nanoporous materials - science and engineering. In: Nanoporous Materials-an Overview. World Scientific, SingaporeCrossRefGoogle Scholar
  126. Luo J, Wan Y (2013) Effects of pH and salt on nanofiltration—a critical review. J Membr Sci 438:18–28CrossRefGoogle Scholar
  127. Ma N, Zhang Y, Quan X, Fan X, Zhao H (2010) Performing a microfiltration integrated with photocatalysis using an Ag-TiO2/HAP/Al2O3 composite membrane for water treatment: Evaluating effectiveness for humic acid removal and anti-fouling properties. Water Res 44:6104–6114CrossRefGoogle Scholar
  128. Mago G, Kalyon DM, Fisher FT (2008) Membranes of polyvinylidene fluoride and PVDF nanocomposites with carbon nanotubes via immersion precipitation. J Nanomater:1–8.  https://doi.org/10.1155/2008/759825 CrossRefGoogle Scholar
  129. Mansoori GA, Bastami TR, Ahmadpour A, Eshaghi Z (2008) Environmental application of nanotechnology. Annual Rev Nano Res 2:439–493CrossRefGoogle Scholar
  130. Mansourpanah Y, Gheshlaghi A (2012) Effects of adding different ethanol amines during membrane preparation on the performance and morphology of nanoporous PES membranes. J Polym Res 19(13):1–7.  https://doi.org/10.1007/s10965-012-0013-4 CrossRefGoogle Scholar
  131. Marrufo-Hernández NA, Hernández-Guerrero M, Nápoles-Duarte JM, Palomares-Báez JP, Chávez-Rojo MA (2018) Prediction of the filtrate particle size distribution from the pore size distribution in membrane filtration: Numerical correlations from computer simulations. AIP Adv 8(035308):1–15.  https://doi.org/10.1063/1.5009568 CrossRefGoogle Scholar
  132. Maximous N, Nakhla G, Wan W, Wong K (2010) Performance of a novel ZrO2/PES membrane for wastewater filtration. J Membr Sci 352(1–2):222–230CrossRefGoogle Scholar
  133. Mehta A, Zydney AL (2005) Permeability and selectivity analysis for ultrafiltration membranes. J Membr Sci 249:245–249.  https://doi.org/10.1016/j.memsci.2004.09.040 CrossRefGoogle Scholar
  134. Michael FL, Volder D, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539CrossRefGoogle Scholar
  135. MingJian L, XianBao W, Rong T, Li W, ShaoQing L, Qin L (2009) Carbon nanotubes periodically decorated by high density polyethylene crystalline using solution crystallization. Sci China Ser B-Chem 52(7):905–910CrossRefGoogle Scholar
  136. Mohamed EF (2017) Nanotechnology: future of environmental air pollution control. Environ Manage Sustainable Dev 6(2):439–454CrossRefGoogle Scholar
  137. Mohammed A, Pei L, Kadhum MA (2002) Characterization and identification of rejection mechanisms in nanofiltration membranes using extended Nernst-Plank model. Clean Technol Environ Policy 4:151–156CrossRefGoogle Scholar
  138. Mokhtari S, Rahimpour A, Shamsabadi AA, Habibzadeh S, Soroush M (2017) Enhancing performance and surface antifouling properties of polysulfone ultrafiltration membranes with salicylate-alumoxane nanoparticles. Appl Surf Sci 393:93–102.  https://doi.org/10.1016/j.apsusc.2016.10.005 CrossRefGoogle Scholar
  139. Moll DJ, Burmester AF, Young TC, McReynolds KB, Clark JE, Hotz CZ, Wessling RA, Quarderer GJ, Lacher RM (1997) Gas separations utilizing glassy polymer membranes at sub-ambient temperatures. European Patent number: EP 0 529 052 B1Google Scholar
  140. Mondal S (2017) Carbon nanomaterials based membranes. J Membr Sci Technol 6(4):1–3Google Scholar
  141. Mulder M (1994) The use of membrane processes in environ mental problems. An introduction. In: Crepso JG, Boddeker KW (eds) Membrane processes in separation and purification. Kluwer Academic Publishers, Dordrecht-Boston-London, pp 229–262CrossRefGoogle Scholar
  142. Muller RA, Muller EA (2017) Fugitive methane and the role of atmospheric half-life: an overview. Geoinfor Geostat 5(3):1–7.  https://doi.org/10.4172/2327-4581.1000162 CrossRefGoogle Scholar
  143. Mulyanti R, Susanto H (2018) Wastewater treatment by nanofiltration membranes. IOP Conf Ser Earth Environ Sci 142(012017):1–6.  https://doi.org/10.1088/1755-1315/142/1/012017 CrossRefGoogle Scholar
  144. Muralikrishnan R, Swarnalakshmi M, Nakkeeran E (2014) Nanoparticle-membrane filtration of vehicular exhaust to reduce air pollution - a review. Int Res J Environ Sci 3(4):82–86Google Scholar
  145. Najari S, Omidkhah M, Hosseini SS (2015) An investigation on the factors affecting the properties and performance of polymeric nanocomposite membranes for olefin/paraffin Separation. In: 5th International biennial conference on ultrafine grained and nanostructured materials, UFGNSM15, 11–12th Nov 2015, Iran, pp 1–6Google Scholar
  146. Nasab SS, Zahmatkesh S (2017) Preparation, structural characterization, and gas separation properties of functionalized zinc oxide particle filled poly(ether-amide) nanocomposite films. J Plast Film Sheet 33(1):92–113CrossRefGoogle Scholar
  147. Nguyen QH, Ali M, Nasir S, Ensinger W (2015) Transport properties of track-etched membranes having variable effective pore-lengths. Nanotechnology 26(48):485502CrossRefGoogle Scholar
  148. Omar L, Liu C, Chong TH, Lienhard JHV (2017) Fundamentals of low-pressure nanofiltration: membrane characterization, modeling, and understanding the multi-ionic interactions in water softening. J Membr Sci 521:18–32CrossRefGoogle Scholar
  149. Pandey N, Shukla SK, Singh NB (2017) Water purification by polymer nanocomposites: an overview. J Nanocompos 3(2):47–66CrossRefGoogle Scholar
  150. Patterson DA, Havill A, Costello S, See-Toh YH, Livingston AG, Turner A (2009) Membrane characterisation by SEM, TEM and ESEM: the implications of dry and wetted microstructure on mass transfer through integrally skinned polyimide nanofiltration membranes. Sep Purif Technol 66:90–97.  https://doi.org/10.1016/j.seppur.2008.11.022 CrossRefGoogle Scholar
  151. Paul M, Jons SD (2016) Chemistry and fabrication of polymeric nanofiltration membranes: a review. Polymer 103:417–456CrossRefGoogle Scholar
  152. Paz Y (2010) Application of TiO2 photocatalysis for air treatment: patents’ overview. Appl Catal B Environ 99:448–460CrossRefGoogle Scholar
  153. Pendergast MM, Hoek EMV (2011) A review of water treatment membrane nanotechnologies. Energy Environ Sci 4:1946–1971.  https://doi.org/10.1039/c0ee00541j CrossRefGoogle Scholar
  154. Pourzamani H, Bina B, Amin MM, Rashidi A (2012) Monoaromatic pollutant removal by carbon nanotubes from aqueous solution. Adv Mater Res 488–489:934–939CrossRefGoogle Scholar
  155. Prabhudessai V, Ganguly A, Mutnuri A (2013) Biochemical methane potential of agro wastes. J Energy 2013:1–7CrossRefGoogle Scholar
  156. Prádanos P, Rodríguez-Méndez ML, Calvo JI, Hernández A, Tejerina F, De Saja JA (1996) Structural characterization of an UF membrane by gas adsorption-desorption and AFM measurements. J Membr Sci 117(1):291–302CrossRefGoogle Scholar
  157. Qin J-J, Oo MH, Kekre KA (2007) Nanofiltration for recovering wastewater from a specific dyeing facility. Sep Purif Technol 56(2):199–203CrossRefGoogle Scholar
  158. Rajabi H, Ghaemi N, Madaeni SS, Daraei P, Astinchap B, Zinadini S, Razavizadeh SH (2015) Nano-ZnO embedded mixed matrix polyethersulfone (PES) membrane: Influence of nanofiller shape on characterization and fouling resistance. Appl Surf Sci 349:66–77.  https://doi.org/10.1016/j.apsusc.2015.04.214. CrossRefGoogle Scholar
  159. Rautenbach R, Welsch K (1993) Treatment of landfill gas by gas permeation - pilot plant results and comparison to alternatives. Desalination 90(1-3):193–207.  https://doi.org/10.1016/0011-9164(93)80176-N CrossRefGoogle Scholar
  160. Raval HD, Gohil JM (2009) Carbon nanotube membrane for water desalination. Int J Nuclear Desalin 3(4):360–368CrossRefGoogle Scholar
  161. Ray JR, Wong W, Jun YS (2017) Antiscaling efficacy of CaCO3 and CaSO4 on polyethylene glycol (PEG)-modified reverse osmosis membranes in the presence of humic acid: interplay of membrane surface properties and water chemistry. Phys Chem Chem Phys 19(7):5647–5657CrossRefGoogle Scholar
  162. Razmkhah M, Ahmadpour A, Mosavian ATH, Moosavi F (2017) What is the effect of carbon nanotube shape on desalination process? a simulation approach. Desalination 407:103–115CrossRefGoogle Scholar
  163. Rezaei Hosseinabadi S, Wyns K, Meynen V, Carleer R, Adriaensens P, Buekenhoudt A, Van der Bruggen B (2014) Organic solvent nanofiltration with Grignard functionalised ceramic nanofiltration membranes. J Membr Sci 454:496–504.  https://doi.org/10.1016/j.memsci.2013.12.032 CrossRefGoogle Scholar
  164. Richards HL, Baker PGL, Iwuoha E (2012) Metal nanoparticle modified polysulfone membranes for use in wastewater treatment: a critical review. J Surf Eng Mater Adv Technol 2:183–193Google Scholar
  165. Roco MC, Williams S, Alivisatos P (2000) IWGN workshop report. Nanotechnology research directions: Vision for nanotechnology in the next decade. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  166. Rowe BW, Robeson LM, Freeman BD, Paul DR (2010) Influence of temperature on the upper bound: theoretical considerations and comparison with experimental results. J Membr Sci 360:58–69.  https://doi.org/10.1016/j.memsci.2010.04.047 CrossRefGoogle Scholar
  167. Roy S, Singha NR (2017) Polymeric nanocomposite membranes for next generation pervaporation process: strategies, challenges and future prospects. Membranes (Basel) 7(53):1–64Google Scholar
  168. Roy Y, Sharqawy MH, John H, Lienhard V (2015) Modeling of flat-sheet and spiral-wound nanofiltration configurations and its application in seawater nanofiltration. J Membr Sci 493:360–372CrossRefGoogle Scholar
  169. Saleh TA, Gupta VK (2012) Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance. Sep Purif Technol 89:245–251CrossRefGoogle Scholar
  170. Schaep J, Van der Bruggen B, Uytterhoeven S, Croux R, Vandecasteele C, Wilms D, Van Houtte E, Vanlerberghe F (1998) Removal of hardness from groundwater by nanofiltration. Desalination 119(1–3):295–302.  https://doi.org/10.1016/S0011-9164(98)00172-6 CrossRefGoogle Scholar
  171. Schaep J, Vandecasteele C, Mohammad AW, Bowen WR (1999) Analysis of salt retention of nanofiltration membranes using the Donnan-Steric Partitioning Pore Model. Sep Sci Technol 34(15):3009–3030CrossRefGoogle Scholar
  172. Schaep J, Vandecasteele C, Mohammad AW, Bowen WR (2001) Modelling the retention of ionic components for different nanofiltration membranes. Sep Purif Technol 22-23(1-3):169–179CrossRefGoogle Scholar
  173. Scholten E, Bromberg L, Rutledge GC, Hatton TA (2011) Electrospun polyurethane fibers for absorption of volatile organic compounds from air. ACS Appl Mater Interface 3(10):3902–3909.  https://doi.org/10.1021/am200748y CrossRefGoogle Scholar
  174. Sekuliċ J, Luiten MWJ, ten Elshof JE, Benes NE, Keizer K (2002) Microporous silica and doped silica membrane for alcohol dehydration by pervaporation. Desalination 148(1–3):19–23CrossRefGoogle Scholar
  175. Senapati S, Chandra A (2001) Dielectric constant of water confined in a nanocavity. J Phys Chem B 105:5106–5109CrossRefGoogle Scholar
  176. Shaaban AMF, Hafez AI, Abdel-Fatah MA, Abdel-Monem NM, Mahmoud MH (2016) Process engineering optimization of nanofiltration unit for the treatment of textile plant effluent in view of solution diffusion model. Egypt J Pet 25:79–90.  https://doi.org/10.1016/j.ejpe.2015.03.018 CrossRefGoogle Scholar
  177. Shahabadi SMS, Brant JA (2019) Bio-inspired superhydrophobic and superoleophilic nanofibrous membranes for non-aqueous solvent and oil separation from water. Sep Purif Technol 210:587–599CrossRefGoogle Scholar
  178. Shahtalebi A, Sarrafzadeh MH, Montazer Rahmati MM (2011) Application of nanofiltration membrane in the separation of amoxicillin from pharmaceutical wastewater. Iran J Environ Health Sci Eng 8(2):109–116Google Scholar
  179. Sharma RR, Agrawal R, Chellam S (2003) Temperature effects on sieving characteristics of thin-film composite nanofiltration membranes: pore size distributions and transport parameters. J Membr Sci 223:69–87.  https://doi.org/10.1016/S0376-7388(03)00310-7 CrossRefGoogle Scholar
  180. Shon HK, Phuntsho S, Chaudhary DS, Vigneswaran S, Cho J (2013) Nanofiltration for water and wastewater treatment – a mini review. Drink Water Eng Sci 6:47–53CrossRefGoogle Scholar
  181. Silva V (2015) Dielectric excusion model in membranes. In: Drioli E, Giorno L (eds) Encyclopedia of membranes. Springer, Berlin, HeidelbergGoogle Scholar
  182. Silva LLS, Moreira CG, Curzio BA, da Fonseca FV (2017) Micropollutant removal from water by membrane and advanced oxidation processes-a review. J Water Resourc Protect 9:411–431CrossRefGoogle Scholar
  183. Song C, Kwon T, Han J-E, Shandell M, Strano MS (2009) Controllable synthesis of single-walled carbon nanotube framework membranes and capsules. Nano Lett 9(12):4279–4284CrossRefGoogle Scholar
  184. Sourirajan S (1970) Reverse osmosis. Academic Press, New YorkGoogle Scholar
  185. Sourirajan S (1978) The science of reverse osmosis – mechanisms, membranes, transport and applications. Pure Appl Chem 50:593–615CrossRefGoogle Scholar
  186. Strathmann H (2011) Introduction to membrane science and technology. Wiley-VCH, WeinheimGoogle Scholar
  187. Sun CZ, Wen B, Bai BF (2015) Recent advances in nanoporous graphene membrane for gas separation and water purification. Sci Bull 60:1807–1823CrossRefGoogle Scholar
  188. Susanto H (2011) Teknologi Membran. Badan Penerbit Universitas Diponegoro, SemarangGoogle Scholar
  189. Szymczyk A, Fievet P (2005) Investigating transport properties of nanofiltration membranes by means of a steric, electric and dielectric exclusion model. J Membr Sci 252:77–88.  https://doi.org/10.1016/j.memsci.2004.12.002 CrossRefGoogle Scholar
  190. Tanninen J, Nystrom M (2002) Separation of ions in acidic conditions using NF. Desalination 147:295–299.  https://doi.org/10.1016/S0011-9164(02)00555-6 CrossRefGoogle Scholar
  191. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106(3):1105–1136.  https://doi.org/10.1021/cr050569o CrossRefGoogle Scholar
  192. Tayefeh A, Mousavi SA, Wiesner M, Poursalehi R (2015) Synthesis and surface characterization of magnetite-titania nanoparticles/polyamide nanocomposite smart RO membrane. 5th International Biennial Conference on Ultrafine Grained and Nanostructured Materials, UFGNSM15. Proc Mater Sci 11:342–346CrossRefGoogle Scholar
  193. Thuyavan YL, Anantharaman N, Arthanareeswaran G (2014) Adsorptive removal of humic acid by zirconia embedded in poly (ether sulfone) membrane. Ind Eng Chem Res 53(28):11355–11364.  https://doi.org/10.1021/ie5015712 CrossRefGoogle Scholar
  194. Thwala JM, Minghua L, Wong MSY, Kang S, Hoek EMV, Mamba BB (2013) Bacteria-polymeric membrane interactions: atomic force microscopy and XDLVO predictions. Langmuir 29(45):13773–13782.  https://doi.org/10.1021/la402749y CrossRefGoogle Scholar
  195. Tsuru T, Nakao SI, Kimura S (1991) Calculation of ion rejection by extended Nernst-Planck equation with charged reverse osmosis membranes for single and mixed electrolyte solutions. J Chem Eng Jpn 24:511–517CrossRefGoogle Scholar
  196. Tylkowski B, Tsibranska T (2015) Overview of main techniques used for membrane characterization. J Chem Technol Metal 50(1):3–12Google Scholar
  197. Ursino C, Castro-Muñoz R, Drioli E, Gzara L, Albeirutty MH, Figoli A (2018) Progress of nanocomposite membranes for water treatment: review. Membranes (Basel) 8(18):1–40Google Scholar
  198. Valadez-Blanco R, Livingston AG (2009) Solute molecular transport through polyimide asymmetric organic solvent nanofiltration (OSN) membranes and the effect of membrane-formation parameters on mass transfer. J Membr Sci 326(2):332–342CrossRefGoogle Scholar
  199. Van Rijn CJM (2004) Nano and macro engineered membrane technology, Membrane science and technology series 10. Elsevier, Amsterdam, p 4Google Scholar
  200. Vandezande P, Gevers LEM, Vankelecom IFJ (2008) Solvent resistance nanofiltration: separating on a molecular level. Chem Soc Rev 37:365–405.  https://doi.org/10.1039/B610848M CrossRefGoogle Scholar
  201. Verdejo R, Bernal MM, Romasanta LJ, Tapiador FJ, Lopez-Manchado MA (2011) Reactive nanocomposite foams. Cellular Polym 30(2):45–61CrossRefGoogle Scholar
  202. Vezzani D, Bandini S (2002) Donnan equilibrium and dielectric exclusion for characterization of nanofiltration membranes. Desalination 149:477483CrossRefGoogle Scholar
  203. Wang G, Chen S, Yu H, Quan X (2015) Integration of membrane filtration and photoelectrocatalysis using a TiO2/carbon/Al2O3 membrane for enhanced water treatment. J Hazard Mater s 299:27–34CrossRefGoogle Scholar
  204. Wang Y, Wang X, Li M, Dong J, Sun C, Chen G (2018) Removal of pharmaceutical and personal care products (PPCPs) from municipal waste water with integrated membrane systems, MBR-RO/NF. Int J Environ Res Public Health 15(269):1–12Google Scholar
  205. WARWICK (2018) warwick.ac.uk/fac/sci/physics/current/postgraduate/regs/mpagswarwick/ex5/techniques/structural/tem/. Assessed 23 Aug 2018Google Scholar
  206. Wijmans JG, Baker RW (1995) The solution-diffusion model: a review. J Membr Sci 107:1–21.  https://doi.org/10.1016/0376-7388(95)00102-I CrossRefGoogle Scholar
  207. World Health Organization (2011) Safe drinking water from desalination. WHO/HSE/WSH/11.03. http://www.who.int/water_sanitation_health/publications/2011/desalination_guidance_en.pdf. Assessed 21 Oct 2018
  208. Xu Q, Xu H, Chen J, Lv Y, Dong C, Sreeprasad TS (2015) Graphene and graphene oxide: Advanced membranes for gas separation and water purification. Inorg Chem Front 2:417–424CrossRefGoogle Scholar
  209. Xu YY, Wei XL, Liang S, Sun YL, Chao ZS (2018) Synthesis of a ZSM-5/NaA hybrid zeolite membrane using kaolin as a modification layer. New J Chem 42:6664–6672CrossRefGoogle Scholar
  210. Yamada T, Namai T, Hata K, Futaba DN, Mizuno K, Fan J, Yudasaka M, Yumura M, Iijima S (2006) Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts. Nat Nanotechnol 1:131–136CrossRefGoogle Scholar
  211. Yaroshchuk AE (2000) Dielectric exclusion of ions from membranes. Adv Colloid Interface Sci 85:193–230CrossRefGoogle Scholar
  212. Yoon S-H (2016) Membrane bioreactor processes: principles and applications, Advances in water and wastewater transport and treatment, 1st edn. CRC Press, Taylor and Francis, LondonGoogle Scholar
  213. Yoon Y, Westerhoff P, Snyder SA, Wert EC (2006) Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products. J Membr Sci 270(1–2):88–100CrossRefGoogle Scholar
  214. Younssi SA, Breida M, Achiou B (2018) Alumina membranes for desalination and water treatment. Intech, RijekaCrossRefGoogle Scholar
  215. Zahid M, Rashid A, Akram S, Rehan ZA, Razzaq W (2018) A comprehensive review on polymeric nano-composite membranes for water treatment. J Membr Sci Technol 8(1):1–20.  https://doi.org/10.4172/2155-9589.1000179 CrossRefGoogle Scholar
  216. Zahri K, Goh PS, Ismail AF (2016) The incorporation of graphene oxide into polysulfone mixed matrix membrane for CO2/CH4 separation. Earth Environ Sci 36:012007Google Scholar
  217. Zhang Y, Liu P (2015) Polysulfone(PSF) composite membrane with micro-reaction locations (MRLs) made by doping sulfated TiO2 deposited on SiO2 nanotubes (STSNs) for cleaning wastewater. J Membr Sci 493:275–284CrossRefGoogle Scholar
  218. Zhang Y, Shan X, Jin Z, Wang Y (2011) Synthesis of sulfated Y-doped zirconia particles and effect on properties of polysulfone membranes for treatment of wastewater containing oil. J Hazard Mater 192(2):559–567CrossRefGoogle Scholar
  219. Zhang Y, Liu F, Lu Y, Zhao L, Song L (2013) Investigation of phosphorylated TiO2-SiO2 particles/polysulfone composite membrane for wastewater treatment. Desalination 324:118–126CrossRefGoogle Scholar
  220. Zhang Q, Chen S, Fan X, Zhang H, Yu H, Quan X (2018) A multifunctional graphene-based nanofiltration membrane under photo assistance for enhanced water treatment based on layer-by-layer sieving. Appl Catal B Environ 224:204–213CrossRefGoogle Scholar
  221. Zhao Y, Tan Y, Wong FS, Fane A, Xu N (2006) Formation of Mg(OH)2 dynamic membranes for oily water separation: Effects of operating conditions. Desalination 191:344–350CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Oluranti Agboola
    • 1
    • 2
  • Rotimi Sadiku
    • 2
  • Patricia Popoola
    • 3
  • Samuel Eshorame Sanni
    • 1
  • Peter Adeniyi Alaba
    • 2
  • Daniel Temitayo Oyekunle
    • 1
  • Victoria Oluwaseun Fasiku
    • 3
  • Mukuna Patrick Mubiayi
    • 4
  1. 1.Department of Chemical EngineeringCovenant UniversityOtaNigeria
  2. 2.Department of Chemical, Metallurgical and Materials EngineeringTshwane University of TechnologyPretoriaSouth Africa
  3. 3.Department of Pharmaceutical SciencesUniversity of KwaZulu-NatalDurbanSouth Africa
  4. 4.Department of Mechanical Engineering ScienceUniversity of JohannesburgJohannesburgSouth Africa

Personalised recommendations