Advertisement

Advances in Pd Membranes for Hydrogen Production from Residual Biomass and Wastes

  • M. MaroñoEmail author
  • D. Alique
Chapter
  • 48 Downloads
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 42)

Abstract

Hydrogen production from residual biomass and wastes is a sustainable approach for reducing their final accumulation in landfills and simultaneously a very promising alternative for the energy recovery. Most developed technologies to produce H2 from residual biomass and wastes are reviewed in this chapter focusing on the separation/purification of the produced hydrogen. Suitability of both thermochemical and biological technologies for hydrogen production is described, and examples of industrial processes are included. Basics of hydrogen separation/purification with membranes are detailed, and suitable separation technologies for the purification of hydrogen produced from biomass and waste conversion are presented focusing on the most recent advances in Pd-based membranes. The use of membrane reactors in which the traditional chemical reaction is combined to the continuous extraction of the main product with high purity, in this case hydrogen, is particularly interesting, being also addressed the most recent developments in this field.

Keywords

Hydrogen production Wastes Residual biomass Valorization Palladium Membrane Membrane reactor CO2 capture 

Acronyms

ATR

Autothermal reforming

CCS

Carbon capture and storage

CCU

Carbon capture and utilization

DC

Direct current

DF

Dark fermentation

DOE

Department Of Energy (United States of America)

DOR

Dry oxidation reforming

DR

Dry reforming

EAP

East Asia and Pacific region

ELP

Electroless plating

ELP-PL

Electroless plating with additional protective layer

ELP-PP

Electroless pore-plating

EU

European Union

FBR

Fluidized-bed reactor

GHGs

Greenhouse gases

GHSV

Gas hourly space velocity

HT

High temperature

HRF

Hydrogen recovery factor

IGCC

Integrated gasification combined cycle

LT

Low temperature

MCW

Microwaves

MR

Membrane reactor

MSW

Municipal solid waste

NG

Natural gas

OCDE

Organization for Economic Co-operation and Development

OMW

Olive mill wastewater

OS-ELP

Osmosis-assisted electroless plating

PBR

Packed bed reactor

PCB

Printed circuit board

PF

Pore filling

POR

Partial oxidation reforming

PSA

Pressure swing adsorption

PSS

Porous stainless steel

RDF

Refuse-derived fuel

RF

Refuse fraction

RFR

Radio frequency

SEM

Scanning electron microscopy

SEWGS

Sorption-enhanced water–gas shift

SIP

Steam–iron process

SMR-OG

Steam methane reforming off-gas

SNG

Synthetic natural gas

SR

Steam reforming

SRF

Solid recovered fraction

USA

United States of America

VA-ELP

Vacuum-assisted electroless plating

WGS

Water–gas shift

Notes

Acknowledgments

We would express our gratitude to professors Z. Zhang, W. Zhang, and E. Lichtfouse, editors of this book, for the opportunity to prepare a contribution based on the advances in Pd membranes for hydrogen production from residual biomass and wastes. Some words of thanks need also to be dedicated to the Spanish Ministry of Economy and Competitiveness for supporting the research activities of CIEMAT and URJC on this topic through diverse public research projects: PSE-120000-2008-29, ENE2009-08002, IPT-2012-0365-120000 and ENE-2007-66959, CTQ2010-21102-C02-01, CTQ2013-44447-R, and ENE2017-83696-R, respectively. Finally, we also thank all rights for reproducing figures and tables from previous works.

List of Symbols

α H2/N2

Ideal separation factor between hydrogen and nitrogen

E a

Activation energy (kJ mol−1)

k H2

Hydrogen permeability (mol m−1 s−1 Pa−0.5)

k′ H2

Hydrogen permeance (mol m−2 s−1 Pa−0.5)

K int

Intra-particle diffusion coefficient

J i

Permeate flux of component i (i.e., hydrogen, nitrogen, etc.) (mol s−1)

n

Exponent of pressure driving force in Sieverts’ law

P

Pressure (Pa)

P p,i

Pressure of component i in the permeate side (Pa)

P r,i

Pressure of component i in the retentate side (Pa)

η mem

Membrane effectiveness factor

T

Temperature (°C)

t

Thickness (μm)

X i

Chemical conversion of component i (%)

References

  1. Abate S, Díaz U, Prieto A, Gentiluomo S, Palomino M, Perathoner S, Corma A, Centi G (2016) Influence of zeolite protective overlayer on the performances of Pd thin film membrane on tubular asymmetric alumina supports. Ind Eng Chem Res 55:4948–4959.  https://doi.org/10.1021/acs.iecr.6b00690 CrossRefGoogle Scholar
  2. Adatoz E, Avci AK, Keskin S (2015) Opportunities and challenges of MOF-based membranes in gas separations. Sep Purif Technol 152:207–237.  https://doi.org/10.1016/J.SEPPUR.2015.08.020 CrossRefGoogle Scholar
  3. Adhikari S, Fernando S (2006) Hydrogen membrane separation techniques. Ind Eng Chem Res 45:875–881.  https://doi.org/10.1021/ie050644l CrossRefGoogle Scholar
  4. Advanced Hydrogen Transport Membranes for Coal Gasification (n.d.). https://www.netl.doe.gov/
  5. Ahmad AA, Zawawi NA, Kasim FH, Inayat A, Khasri A (2016) Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization and economic evaluation. Renew Sustain Energy Rev 53:1333–1347.  https://doi.org/10.1016/j.rser.2015.09.030 CrossRefGoogle Scholar
  6. Aldy JE, Pizer WA, Akimoto K (2017) Comparing emissions mitigation efforts across countries. Clim Policy 17:501–515.  https://doi.org/10.1080/14693062.2015.1119098 CrossRefGoogle Scholar
  7. Ali A, Pothu R, Siyal SH, Phulpoto S, Sajjad M, Thebo KH (2019) Graphene-based membranes for CO2 separation. Mater Sci Energy Technol 2:83–88.  https://doi.org/10.1016/J.MSET.2018.11.002 CrossRefGoogle Scholar
  8. Alique D (2018) Processing and characterization of coating and thin film materials. In: Zhang J, Jung Y (eds) Advanced ceramic and metallic coating and thin film materials for energy and environmental applications.  https://doi.org/10.1007/978-3-319-59906-9 CrossRefGoogle Scholar
  9. Alique D, Imperatore M, Sanz R, Calles JA, Baschetti MG (2016) Hydrogen permeation in composite Pd-membranes prepared by conventional electroless plating and electroless pore-plating alternatives over ceramic and metallic supports. Int J Hydrog Energy 41:19430–19438.  https://doi.org/10.1016/j.ijhydene.2016.06.128 CrossRefGoogle Scholar
  10. Alique D, Martinez-Diaz D, Sanz R, Calles JA (2018) Review of supported pd-based membranes preparation by electroless plating for ultra-pure hydrogen production. Membranes (Basel).  https://doi.org/10.3390/membranes8010005 CrossRefGoogle Scholar
  11. Al-Mufachi NA, Rees NV, Steinberger-Wilkens R (2015) Hydrogen selective membranes: a review of palladium-based dense metal membranes. Renew Sustain Energy Rev 47:540–551.  https://doi.org/10.1016/j.rser.2015.03.026. CrossRefGoogle Scholar
  12. ALTER NRG Corp (2016). www.alternrg.com
  13. Alvarez J, Kumagai S, Wu C, Yoshioka T, Bilbao J, Olazar M, Williams PT (2014) Hydrogen production from biomass and plastic mixtures by pyrolysis-gasification. Int J Hydrog Energy 39:10883–10891.  https://doi.org/10.1016/j.ijhydene.2014.04.189 CrossRefGoogle Scholar
  14. Alves HJ, Bley Junior C, Niklevicz RR, Frigo EP, Frigo MS, Coimbra-Araújo CH (2013) Overview of hydrogen production technologies from biogas and the applications in fuel cells. Int J Hydrog Energy 38:5215–5225.  https://doi.org/10.1016/j.ijhydene.2013.02.057 CrossRefGoogle Scholar
  15. Alzate-Gaviria LM, Sebastian PJ, Pérez-Hernández A, Eapen D (2007) Comparison of two anaerobic systems for hydrogen production from the organic fraction of municipal solid waste and synthetic wastewater. Int J Hydrogen Energ 32:3141–3146.  https://doi.org/10.1016/j.ijhydene.2006.02.034 CrossRefGoogle Scholar
  16. Arena U (2012) Process and technological aspects of municipal solid waste gasification. A review. Waste Manag 32:625–639.  https://doi.org/10.1016/j.wasman.2011.09.025 CrossRefGoogle Scholar
  17. Arratibel Plazaola A, Pacheco Tanaka D, Van Sint Annaland M, Gallucci F (2017) Recent advances in Pd-based membranes for membrane reactors. Molecules 22:51.  https://doi.org/10.3390/molecules22010051 CrossRefGoogle Scholar
  18. Arratibel A, Astobieta U, Pacheco Tanaka DA, Van Sint Annaland M, Gallucci F (2016) N2, He and CO2 diffusion mechanism through nanoporous YSZ/γ-Al2O3 layers and their use in a pore-filled membrane for hydrogen membrane reactors. Int J Hydrog Energy 41:8732–8744.  https://doi.org/10.1016/j.ijhydene.2015.11.152 CrossRefGoogle Scholar
  19. Arratibel A, Pacheco Tanaka DA, Slater TJA, Burnett TL, van Sint Annaland M, Gallucci F (2018a) Unravelling the transport mechanism of pore-filled membranes for hydrogen separation. Sep Purif Technol 203:41–47.  https://doi.org/10.1016/j.seppur.2018.04.016 CrossRefGoogle Scholar
  20. Arratibel A, Medrano JA, Melendez J, Pacheco Tanaka DA, van Sint Annaland M, Gallucci F (2018b) Attrition-resistant membranes for fluidized-bed membrane reactors: double-skin membranes. J Membr Sci 563:419–426.  https://doi.org/10.1016/j.memsci.2018.06.012 CrossRefGoogle Scholar
  21. Arratibel A, Pacheco Tanaka A, Laso I, van Sint Annaland M, Gallucci F (2018c) Development of Pd-based double-skinned membranes for hydrogen production in fluidized bed membrane reactors. J Membr Sci 550:536–544.  https://doi.org/10.1016/J.MEMSCI.2017.10.064 CrossRefGoogle Scholar
  22. Ateş F, Miskolczi N, Borsodi N (2013) Comparision of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. part I: product yields, gas and pyrolysis oil properties. Bioresour Technol 133:443–454.  https://doi.org/10.1016/j.biortech.2013.01.112 CrossRefGoogle Scholar
  23. Aykac Ozen H, Ozturk B (2019) Gas separation characteristic of mixed matrix membrane prepared by MOF-5 including different metals. Sep Purif Technol 211:514–521.  https://doi.org/10.1016/J.SEPPUR.2018.09.052 CrossRefGoogle Scholar
  24. Baker RW (2002) Future directions of membrane gas separation technology. Ind Eng Chem Res 41:1393–1411.  https://doi.org/10.1021/ie0108088 CrossRefGoogle Scholar
  25. Bakonyi P, Kumar G, Bélafi-Bakó K, Kim S-H, Koter S, Kujawski W, Nemestóthy N, Peter J, Pientka Z (2018) A review of the innovative gas separation membrane bioreactor with mechanisms for integrated production and purification of biohydrogen. Bioresour Technol 270:643–655.  https://doi.org/10.1016/J.BIORTECH.2018.09.020 CrossRefGoogle Scholar
  26. Balat H, Kırtay E (2010) Hydrogen from biomass e present scenario and future prospects. Int J Hydrog Energy 35:7416–7426.  https://doi.org/10.1016/j.ijhydene.2010.04.137 CrossRefGoogle Scholar
  27. Balu E, Lee U, Chung JN (2015) High temperature steam gasification of woody biomass – a combined experimental and mathematical modeling approach. Int J Hydrogen Energy 40:14104–14115.  https://doi.org/10.1016/j.ijhydene.2015.08.085 CrossRefGoogle Scholar
  28. Barreiro MM, Maroño M, Sánchez JM (2015) Hydrogen separation studies in a membrane reactor system: Influence of feed gas flow rate, temperature and concentration of the feed gases on hydrogen permeation. Appl Therm Eng 74:186–193.  https://doi.org/10.1016/j.applthermaleng.2013.12.035 CrossRefGoogle Scholar
  29. Basile A, Tong J, Millet P (2013) 2 – inorganic membrane reactors for hydrogen production: an overview with particular emphasis on dense metallic membrane materials. In: Basile A (ed) Handb. Membr. React. Woodhead Publishing, pp 42–148.  https://doi.org/10.1533/9780857097330.1.42 CrossRefGoogle Scholar
  30. Basile A, Jokar S, Shariati A, Iulianelli A, Rahimpour M, Dalena F, Vita A, Bagnato G (2016) Pure hydrogen production in membrane reactor with mixed reforming reaction by utilizing waste gas: a case study. Processes 4:33.  https://doi.org/10.3390/pr4030033 CrossRefGoogle Scholar
  31. Beavis R, Forsyth J, Roberts E, Song B, Combes G, Abbott J, Macleod N, Vass E, Davies M, Barton I (2013) A step-change sour shift process for improving the efficiency of IGCC with CCS. Energy Procedia 37:2256–2264.  https://doi.org/10.1016/j.egypro.2013.06.106 CrossRefGoogle Scholar
  32. Bičáková O, Straka P (2016) Co-pyrolysis of waste tire/coal mixtures for smokeless fuel, maltenes and hydrogen-rich gas production. Energy Convers Manag 116:203–213.  https://doi.org/10.1016/j.enconman.2016.02.069 CrossRefGoogle Scholar
  33. Boon J, Cobden PD, van Dijk HAJ, van Sint Annaland M (2015a) High-temperature pressure swing adsorption cycle design for sorption-enhanced water-gas shift. Chem Eng Sci 122:219–231.  https://doi.org/10.1016/j.ces.2014.09.034 CrossRefGoogle Scholar
  34. Boon J, Pieterse JAZ, van Berkel FPF, van Delft YC, van Sint Annaland M (2015b) Hydrogen permeation through palladium membranes and inhibition by carbon monoxide, carbon dioxide, and steam. J Membr Sci 496:344–358.  https://doi.org/10.1016/j.memsci.2015.08.061 CrossRefGoogle Scholar
  35. Bosmans A, Vanderreydt I, Geysen D, Helsen L (2013) The crucial role of Waste-to-Energy technologies in enhanced landfill mining: a technology review. J Clean Prod 55:10–23.  https://doi.org/10.1016/j.jclepro.2012.05.032 CrossRefGoogle Scholar
  36. Braun F, Miller JB, Gellman AJ, Tarditi AM, Fleutot B, Kondratyuk P, Cornaglia LM (2012) PdAgAu alloy with high resistance to corrosion by H2S. Int J Hydrog Energy 37:18547–18555.  https://doi.org/10.1016/j.ijhydene.2012.09.040 CrossRefGoogle Scholar
  37. Braun F, Tarditi AM, Miller JB, Cornaglia LM (2014) Pd-based binary and ternary alloy membranes: morphological and perm-selective characterization in the presence of H2S. J Membr Sci 450:299–307.  https://doi.org/10.1016/j.memsci.2013.09.026 CrossRefGoogle Scholar
  38. Bridgwater AV (1996) Production of high grade fuels and chemicals from catalytic pyrolysis of biomass. Catal Today 29:285–295.  https://doi.org/10.1016/0920-5861(95)00294-4 CrossRefGoogle Scholar
  39. Bridgwater AV (1999) Principles and practice of biomass fast pyrolysis processes for liquids. J Anal Appl Pyrolysis 51:3–22.  https://doi.org/10.1016/S0165-2370(99)00005-4 CrossRefGoogle Scholar
  40. Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94.  https://doi.org/10.1016/j.biombioe.2011.01.048 CrossRefGoogle Scholar
  41. Brunetti A, Barbieri G, Drioli E (2011) Integrated membrane system for pure hydrogen production : A Pd – Ag membrane reactor and a PEMFC. Fuel Process Technol 92:166–174.  https://doi.org/10.1016/j.fuproc.2010.09.023 CrossRefGoogle Scholar
  42. Brunetti A, Zito PF, Giorno L, Drioli E, Barbieri G (2017) Membrane reactors for low temperature applications: an overview. Chem Eng Process Process Intensif.  https://doi.org/10.1016/j.cep.2017.05.002 CrossRefGoogle Scholar
  43. Bruni G, Rizzello C, Santucci A, Alique D, Incelli M, Tosti S (2019) On the energy efficiency of hydrogen production processes via steam reforming using membrane reactors. Int J Hydrog Energy 44:988–999.  https://doi.org/10.1016/j.ijhydene.2018.11.095 CrossRefGoogle Scholar
  44. Butler E, Devlin G, Meier D, McDonnell K (2011) A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading. Renew Sustain Energy Rev 15:4171–4186.  https://doi.org/10.1016/j.rser.2011.07.035 CrossRefGoogle Scholar
  45. Byron Smith RJ, Loganathan M, Shantha MS (2010) A review of the water gas shift reaction kinetics. Int J Chem React Eng 8:1–32Google Scholar
  46. Calles JA, Sanz R, Alique D, Furones L (2014) Thermal stability and effect of typical water gas shift reactant composition on H2 permeability through a Pd-YSZ-PSS composite membrane. Int J Hydrog Energy 39:1398–1409.  https://doi.org/10.1016/j.ijhydene.2013.10.168 CrossRefGoogle Scholar
  47. Calles JA, Sanz R, Alique D, Furones L, Marín P, Ordoñez S (2018) Influence of the selective layer morphology on the permeation properties for Pd-PSS composite membranes prepared by electroless pore-plating: experimental and modeling study. Sep Purif Technol 194:10–18.  https://doi.org/10.1016/j.seppur.2017.11.014 CrossRefGoogle Scholar
  48. Caravella A, Barbieri G, Drioli E (2008) Modelling and simulation of hydrogen permeation through supported Pd-alloy membranes with a multicomponent approach. Chem Eng Sci 63:2149–2160.  https://doi.org/10.1016/j.ces.2008.01.009 CrossRefGoogle Scholar
  49. Caravella A, Hara S, Sun Y, Drioli E, Barbieri G (2014) Coupled influence of non-ideal diffusion and multilayer asymmetric porous supports on Sieverts law pressure exponent for hydrogen permeation in composite Pd-based membranes. Int J Hydrog Energy 39:2201–2214.  https://doi.org/10.1016/j.ijhydene.2013.11.074 CrossRefGoogle Scholar
  50. Carioca OB, Reis M, Fava F, Poggi-Varaldo HM, Ferreira BS, Diels L, Totaro G, Duarte J (2013) Biowaste biorefinery in Europe: opportunities and research & development needs. New Biotechnol 32:100–108.  https://doi.org/10.1016/j.nbt.2013.11.003 CrossRefGoogle Scholar
  51. Casero P, Peña FG, Coca P, Trujillo J (2014) ELCOGAS 14 MWth pre-combustion carbon dioxide capture pilot. Technical & economical achievements. Fuel 116:804–811.  https://doi.org/10.1016/j.fuel.2013.07.027 CrossRefGoogle Scholar
  52. Catalano J, Giacinti Baschetti M, Sarti GC (2009) Influence of the gas phase resistance on hydrogen flux through thin palladium–silver membranes. J Membr Sci 339:57–67.  https://doi.org/10.1016/j.memsci.2009.04.032 CrossRefGoogle Scholar
  53. Chang JS, Gu BW, Looy PC, Chu FY, Simpson CJ (1996) Thermal plasma pyrolysis of used old tires for production of syngas. J Environ Sci Health Part A: Environ Sci Eng Toxicol 31:1781–1799.  https://doi.org/10.1080/10934529609376456 CrossRefGoogle Scholar
  54. Checchetto R, Bazzanella N, Patton B, Miotello A (2004) Palladium membranes prepared by r.f. magnetron sputtering for hydrogen purification. Surf Coat Technol 177:73–79.  https://doi.org/10.1016/j.surfcoat.2003.06.001 CrossRefGoogle Scholar
  55. Chen SC, Tu GC, Hung CCY, Huang CA, Rei MH (2008) Preparation of palladium membrane by electroplating on AISI 316L porous stainless steel supports and its use for methanol steam reformer. J Membr Sci 314:5–14.  https://doi.org/10.1016/j.memsci.2007.12.066 CrossRefGoogle Scholar
  56. Chen W, Hu X, Wang R, Huang Y (2010) On the assembling of Pd/ceramic composite membranes for hydrogen separation. Sep Purif Technol 72:92–97.  https://doi.org/10.1016/j.seppur.2010.01.010 CrossRefGoogle Scholar
  57. Chen C-H, Huang Y-R, Liu C-W, Wang K-W (2016) Preparation and modification of PdAg membranes by electroless and electroplating process for hydrogen separation. Thin Solid Films 618:189–194.  https://doi.org/10.1016/j.tsf.2016.04.049 CrossRefGoogle Scholar
  58. Chung JN (2014) A theoretical study of two novel concept systems for maximum thermal-chemical conversion of biomass to hydrogen. Front Energy Res 1:1–10.  https://doi.org/10.3389/fenrg.2013.00012 CrossRefGoogle Scholar
  59. Conde JJ, Maroño M, Sánchez-Hervás JM (2017) Pd-based membranes for hydrogen separation: review of alloying elements and their influence on membrane properties. Sep Purif Rev 46:152–177.  https://doi.org/10.1080/15422119.2016.1212379 CrossRefGoogle Scholar
  60. Cornaglia L, Múnera J, Lombardo E (2015) Recent advances in catalysts, palladium alloys and high temperature WGS membrane reactors: a review. Int J Hydrog Energy 40:3423–3437.  https://doi.org/10.1016/j.ijhydene.2014.10.091 CrossRefGoogle Scholar
  61. Coskun C, Bayraktar M, Oktay Z, Dincer I (2012) Investigation of biogas and hydrogen production from waste water of milk-processing industry in Turkey. Int J Hydrog Energy 37:16498–16504.  https://doi.org/10.1016/j.ijhydene.2012.02.174 CrossRefGoogle Scholar
  62. Coutanceau C, Baranton S, Audichon T (2018) Chapter 2 – Hydrogen production from thermal reforming BT – hydrogen electrochemical production. In: Hydrog. Energy Fuel Cells Prim. Academic Press, pp 7–15.  https://doi.org/10.1016/B978-0-12-811250-2.00002-9 CrossRefGoogle Scholar
  63. Czajczyńska D, Nannou T, Anguilano L, Krzyzyńska R, Ghazal H, Spencer N, Jouhara H (2017) Potentials of pyrolysis processes in the waste management sector. Energy Procedia 123:387–394.  https://doi.org/10.1016/j.egypro.2017.07.275 CrossRefGoogle Scholar
  64. Czernik S, French RJ (2006) Production of hydrogen from plastics by pyrolysis and catalytic steam reform. Energy Fuels 20:754–758.  https://doi.org/10.1021/ef050354h CrossRefGoogle Scholar
  65. Damrongsak D, Tippayawong N (2010) Experimental investigation of an automotive air-conditioning system driven by a small biogas engine. Appl Therm Eng 30:400–405.  https://doi.org/10.1016/j.applthermaleng.2009.09.003 CrossRefGoogle Scholar
  66. Daniel H, Bhada-Tata P (n.d.) What a waste: a global review of solid waste management, 2012. https://openknowledge.worldbank.org/handle/10986/17388
  67. De Araújo GC, Do Carmo Rangel M (2000) Environmental friendly dopant for the high-temperature shift catalysts. Catal Today 62:201–207.  https://doi.org/10.1016/S0920-5861(00)00421-1 CrossRefGoogle Scholar
  68. de Lasa H, Salaices E, Mazumder J, Lucky R (2011) Catalytic steam gasification of biomass: catalysts, thermodynamics and kinetics. Chem Rev 111:5404–5433.  https://doi.org/10.1021/cr200024w CrossRefGoogle Scholar
  69. De Nooijer N, Gallucci F, Pellizzari E, Melendez J, Alfredo D, Tanaka P, Manzolini G, Van Sint M (2018) On concentration polarisation in a fl uidized bed membrane reactor for biogas steam reforming: modelling and experimental validation. Chem Eng J 348:232–243.  https://doi.org/10.1016/j.cej.2018.04.205 CrossRefGoogle Scholar
  70. Delgado J, Aznar MP, Corella J (1997) Biomass gasification with steam in fluidized bed: effectiveness of CaO, MgO, and CaO-MgO for hot raw gas cleaning. Ind Eng Chem Res 36:1535–1543.  https://doi.org/10.1021/ie960273w CrossRefGoogle Scholar
  71. DemirbaÅŸ A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 42:1357–1378.  https://doi.org/10.1016/S0196-8904(00)00137-0 CrossRefGoogle Scholar
  72. Detchusananard T, Im-orb K, Ponpesh P, Arpornwichanop A (2018) Biomass gasification integrated with CO2 capture processes for high-purity hydrogen production: process performance and energy analysis. Energy Convers Manag 171:1560–1572.  https://doi.org/10.1016/j.enconman.2018.06.072 CrossRefGoogle Scholar
  73. Deveau ND, Ma YH, Datta R (2013) Beyond Sieverts’ law: a comprehensive microkinetic model of hydrogen permeation in dense metal membranes. J Membr Sci 437:298–311.  https://doi.org/10.1016/j.memsci.2013.02.047 CrossRefGoogle Scholar
  74. Dhineshkumar V, Ramaswamy D (2017) Review on membrane technology applications in food and dairy processing. J Appl Biotechnol Bioeng 3:399–407.  https://doi.org/10.15406/jabb.2017.03.00077 CrossRefGoogle Scholar
  75. Di Marcoberardino G, Binotti M, Manzolini G, Viviente JL, Arratibel A, Roses L, Gallucci F (2017) Achievements of European projects on membrane reactor for hydrogen production. J Clean Prod 161:1442–1450.  https://doi.org/10.1016/j.jclepro.2017.05.122 CrossRefGoogle Scholar
  76. Di Marcoberardino G, Foresti S, Binotti M, Manzolini G (2018) Potentiality of a biogas membrane reformer for decentralized hydrogen production. Chem Eng Process – Process Intensif 129:131–141.  https://doi.org/10.1016/j.cep.2018.04.023 CrossRefGoogle Scholar
  77. Drljo A, Wukovits W, Friedl A (2014) HyTIME – combined biohydrogen and biogas production from 2nd Generation Biomass. Chem Eng Trans 39:1393–1398.  https://doi.org/10.3303/CET1439233 CrossRefGoogle Scholar
  78. Dunbar ZW (2015) Hydrogen purification of synthetic water gas shift gases using microstructured palladium membranes. J Power Sources 297:525–533.  https://doi.org/10.1016/j.jpowsour.2015.08.015 CrossRefGoogle Scholar
  79. Dunbar ZW, Lee IC (2017) Effects of elevated temperatures and contaminated hydrogen gas mixtures on novel ultrathin palladium composite membranes. Int J Hydrog Energy 42:29310–29319.  https://doi.org/10.1016/j.ijhydene.2017.10.032 CrossRefGoogle Scholar
  80. El Hawa HWA, Paglieri SN, Morris CC, Harale A, Way JD (2014) Identification of thermally stable Pd-alloy composite membranes for high temperature applications. J Membr Sci 466:151–160.  https://doi.org/10.1016/j.memsci.2014.04.029 CrossRefGoogle Scholar
  81. Elbaba IF, William PT (2012) Hydrogen from waste tyres. Int J Environ Chem Ecol Geol Geophys Eng 6:321–323Google Scholar
  82. Elseviers W, Hassett PF, Navarre J-L, Whysall M (2015) 50 years of PSA technology for H2 purification, UOP. https://www.uop.com/?document=psa-50-paper&download=1
  83. European Commission (2008) GREEN PAPER. On the management of bio-waste in the European Union. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52008DC0811&from=EN
  84. European Commission (n.d.-a) Eurostat. https://ec.europa.eu/eurostat
  85. European Commission (n.d.-b) Science for environment policy. http://ec.europa.eu/environment/integration/research/newsalert/pdf/197na5_en.pdf
  86. European Environment Agency, Waste-municipal solid waste generation and management (n.d.). http://www.eea.europa.eu/soer-2015/countries-comparison/waste
  87. European Parliament (2018) Directive EU 2018/851. https://eur-lex.europa.eu/eli/dir/2018/851/oj
  88. Fachverband Biogas e. V. (2017) Biogas to biomethane. https://www.biogas-to-biomethane.com/Download/BTB.pdf
  89. Fernandez E, Helmi A, Coenen K, Melendez J, Luis J, Alfredo D, Tanaka P, Van Sint M, Gallucci F (2014) Development of thin Pd e Ag supported membranes for fluidized bed membrane reactors including WGS related gases. Int J Hydrog Energy 40:3506–3519.  https://doi.org/10.1016/j.ijhydene.2014.08.074 CrossRefGoogle Scholar
  90. Fontana AD, Sirini N, Cornaglia LM, Tarditi AM (2018) Hydrogen permeation and surface properties of PdAu and PdAgAu membranes in the presence of CO, CO2 and H2S. J Membr Sci 563:351–359.  https://doi.org/10.1016/j.memsci.2018.06.001 CrossRefGoogle Scholar
  91. Furones L, Alique D (2017) Interlayer properties of in-situ oxidized porous stainless steel for preparation of composite Pd membranes. Chem Eng 2:1.  https://doi.org/10.3390/chemengineering2010001 CrossRefGoogle Scholar
  92. Gade SK, Payzant EA, Park HJ, Thoen PM, Way JD (2009a) The effects of fabrication and annealing on the structure and hydrogen permeation of Pd–Au binary alloy membranes. J Membr Sci 340:227–233.  https://doi.org/10.1016/j.memsci.2009.05.034 CrossRefGoogle Scholar
  93. Gade SK, Keeling MK, Davidson AP, Hatlevik O, Way JD (2009b) Palladium–ruthenium membranes for hydrogen separation fabricated by electroless co-deposition. Int J Hydrog Energy 34:6484–6491.  https://doi.org/10.1016/j.ijhydene.2009.06.037 CrossRefGoogle Scholar
  94. Gallucci F, De Falco M, Tosti S, Marrelli L, Basile A (2007) The effect of the hydrogen flux pressure and temperature dependence factors on the membrane reactor performances. Int J Hydrog Energy 32:4052–4058.  https://doi.org/10.1016/j.ijhydene.2007.03.039 CrossRefGoogle Scholar
  95. Gao Q, Jansson S, Christakopoulos P, Matsakas L, Rova U (2017) Green conversion of municipal solid wastes into fuels and chemicals. Electron J Biotechnol 26:69–83.  https://doi.org/10.1016/j.ejbt.2017.01.004 CrossRefGoogle Scholar
  96. Gao Y, Jiang J, Meng Y, Yan F, Aihemaiti A (2018) A review of recent developments in hydrogen production via biogas dry reforming. Energy Convers Manag 171:133–155.  https://doi.org/10.1016/j.enconman.2018.05.083 CrossRefGoogle Scholar
  97. García-García FR, Torrente-Murciano L, Chadwick D, Li K (2012) Hollow fibre membrane reactors for high H2 yields in the WGS reaction. J Membr Sci 405–406:30–37.  https://doi.org/10.1016/j.memsci.2012.02.031 CrossRefGoogle Scholar
  98. Ghasemzadeh K, Khosravi M, Sadati Tilebon SM, Ghaeinejad-Meybodi A, Basile A (2018) Theoretical evaluation of Pd Ag membrane reactor performance during biomass steam gasification for hydrogen production using CFD method. Int J Hydrog Energy 43:11719–11730.  https://doi.org/10.1016/j.ijhydene.2018.04.221 CrossRefGoogle Scholar
  99. Ghasemzadeh K, Ghahremani M, Amiri TY, Basile A (2019) Performance evaluation of Pd–Ag membrane reactor in glycerol steam reforming process: development of the CFD model. Int J Hydrog Energy 44:1000–1009.  https://doi.org/10.1016/j.ijhydene.2018.11.086 CrossRefGoogle Scholar
  100. Ghimire A, Frunzo L, Pontoni L, d’Antonio G, Lens PNL, Esposito G, Pirozzi F (2015) Dark fermentation of complex waste biomass for biohydrogen production by pretreated thermophilic anaerobic digestate. J Environ Manage 152:43–48.  https://doi.org/10.1016/j.jenvman.2014.12.049 CrossRefGoogle Scholar
  101. Gómez-Barea A, Umeki K, Moilanen A, Kramb J, Konttinen J (2014) Modeling biomass char gasification kinetics for improving prediction of carbon conversion in a fluidized bed gasifier. Fuel 132:107–115.  https://doi.org/10.1016/j.fuel.2014.04.014 CrossRefGoogle Scholar
  102. Goyal HB, Seal D, Saxena RC (2008) Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sustain Energy Rev 12:504–517.  https://doi.org/10.1016/j.rser.2006.07.014 CrossRefGoogle Scholar
  103. Grande CA (2012) Advances in pressure swing adsorption for gas separation. ISRN Chem Eng 2012:1–13.  https://doi.org/10.5402/2012/982934 CrossRefGoogle Scholar
  104. Grieco EM, Baldi G (2012) Pyrolysis of polyethylene mixed with paper and wood: interaction effects on tar, char and gas yields. Waste Manag 32:833–839.  https://doi.org/10.1016/j.wasman.2011.12.014 CrossRefGoogle Scholar
  105. Gupta RKP, Lapalikar V (2016) Recent advances in membrane based waste water treatment technology: a review. Energy Environ Focus 5:241–267CrossRefGoogle Scholar
  106. Hakkarainen R, Salmi T, Keiski RL (1993) Water-gas shift reaction on a cobalt-molybdenum oxide catalyst. Appl Catal A Gen 99:195–215.  https://doi.org/10.1016/0926-860X(93)80099-C CrossRefGoogle Scholar
  107. Han J-Y, Kim C-H, Lim H, Lee K-Y, Ryi S-K (2017) Diffusion barrier coating using a newly developed blowing coating method for a thermally stable Pd membrane deposited on porous stainless-steel support. Int J Hydrog Energy 42:12310–12319.  https://doi.org/10.1016/j.ijhydene.2017.03.053 CrossRefGoogle Scholar
  108. Haryanto A, Fernando S, Adhikari S (2007) Ultrahigh temperature water gas shift catalysts to increase hydrogen yield from biomass gasification. Catal Today 129:269–274.  https://doi.org/10.1016/j.cattod.2006.09.039 CrossRefGoogle Scholar
  109. Hasan A, Dincer I (2019) Comparative assessment of various gasification fuels with waste tires for hydrogen production. Int J Hydrog Energy.  https://doi.org/10.1016/j.ijhydene.2018.11.150 CrossRefGoogle Scholar
  110. Hashim SS, Somalu MR, Loh KS, Liu S, Zhou W, Sunarso J (2018) Perovskite-based proton conducting membranes for hydrogen separation: a review. Int J Hydrog Energy 43:15281–15305.  https://doi.org/10.1016/j.ijhydene.2018.06.045 CrossRefGoogle Scholar
  111. Hassanpour M (2017) Plasma technology and waste management abstract management. iMedPub J 1:11–13Google Scholar
  112. Heidenreich S, Foscolo PU (2015) New concepts in biomass gasification. Prog Energy Combust Sci 46:72–95.  https://doi.org/10.1016/j.pecs.2014.06.002 CrossRefGoogle Scholar
  113. Heidrich ES, Dolfing J, Scott K, Edwards SR, Jones C, Curtis TP (2013) Production of hydrogen from domestic wastewater in a pilot-scale microbial electrolysis cell. Appl Microbiol Biotechnol 97:6979–6989.  https://doi.org/10.1007/s00253-012-4456-7 CrossRefGoogle Scholar
  114. Higman C (2013) State of the gasification industry – the updated worldwide gasification database. In: Int. Pittsburgh Coal Conf. https://www.globalsyngas.org/uploads/downloads/Higman_-2013_PCC_paper_docx.pdf
  115. Horne PA, Williams PT (1996) Influence of temperature on the products from the flash pyrolysis of biomass. Fuel 75:1051–1059.  https://doi.org/10.1016/0016-2361(96)00081-6 CrossRefGoogle Scholar
  116. Huang Y, Dittmeyer R (2007) Preparation of thin palladium membranes on a porous support with rough surface. J Membr Sci 302:160–170.  https://doi.org/10.1016/j.memsci.2007.06.040 CrossRefGoogle Scholar
  117. Huang L, Chen CS, He ZD, Peng DK, Meng GY (1997) Palladium membranes supported on porous ceramics prepared by chemical vapor deposition. Thin Solid Films 302:98–101.  https://doi.org/10.1016/S0040-6090(97)00035-7 CrossRefGoogle Scholar
  118. Hwang K-R, Oh D-K, Lee S-W, Park J-S, Song M-H, Rhee W-H (2017) Porous stainless steel support for hydrogen separation Pd membrane; fabrication by metal injection molding and simple surface modification. Int J Hydrog Energy 42:14583–14592.  https://doi.org/10.1016/j.ijhydene.2017.04.032 CrossRefGoogle Scholar
  119. IEA Bioenergy (2016) Status report on thermal biomass gasification in countries participating in IEA Bioenergy. https://www.ieabioenergy.com/wp-content/uploads/2017/12/Status-report-Task-33-2016.pdf
  120. Ismail N, Ani FN (2015) A review on plasma treatment for the processing of solid waste. J Teknol 72:41–49.  https://doi.org/10.11113/jt.v72.3938 CrossRefGoogle Scholar
  121. Iulianelli A, Liguori S, Huang Y, Basile A (2015) Model biogas steam reforming in a thin Pd-supported membrane reactor to generate clean hydrogen for fuel cells. J Power Sources 273:25–32.  https://doi.org/10.1016/j.jpowsour.2014.09.058 CrossRefGoogle Scholar
  122. Iulianelli A, Liguori S, Vita A, Italiano C, Fabiano C, Huang Y, Basile A (2016) The oncoming energy vector: Hydrogen produced in Pd-composite membrane reactor via bioethanol reforming over Ni/CeO2 catalyst. Catal Today 259:368–375.  https://doi.org/10.1016/j.cattod.2015.04.046 CrossRefGoogle Scholar
  123. Iulianelli A, Palma V, Bagnato G, Ruocco C, Huang Y, Veziroğlu NT, Basile A (2018) From bioethanol exploitation to high grade hydrogen generation: steam reforming promoted by a Co-Pt catalyst in a Pd-based membrane reactor. Renew Energy 119:834–843.  https://doi.org/10.1016/j.renene.2017.10.050 CrossRefGoogle Scholar
  124. Januszewicz K, Klein M, Klugmann-Radziemska E (2012) Gaseous products from scrap tires pyrolisis. Ecol Chem Eng S 19:451–460.  https://doi.org/10.2478/v10216-011-0035-6 CrossRefGoogle Scholar
  125. Jayalakshmi S, Joseph K, Sukumaran V (2009) Bio hydrogen generation from kitchen waste in an inclined plug flow reactor. Int J Hydrog Energy 34:8854–8858.  https://doi.org/10.1016/j.ijhydene.2009.08.048 CrossRefGoogle Scholar
  126. Jayaraman V, Lin YS, Pakala M, Lin RY (1995) Fabrication of ultrathin metallic membranes on ceramic supports by sputter deposition. J Membr Sci 99:89–100.  https://doi.org/10.1016/0376-7388(94)00212-H CrossRefGoogle Scholar
  127. Jeihanipour A, Aslanzadeh S, Rajendran K, Balasubramanian G, Taherzadeh MJ (2013) High-rate biogas production from waste textiles using a two-stage process. Renew Energy 52:128–135.  https://doi.org/10.1016/j.renene.2012.10.042 CrossRefGoogle Scholar
  128. Jia H, Wu P, Zeng G, Salas-Colera E, Serrano A, Castro GR, Xu H, Sun C, Goldbach A (2017) High-temperature stability of Pd alloy membranes containing Cu and Au. J Membr Sci 544:151–160.  https://doi.org/10.1016/J.MEMSCI.2017.09.012 CrossRefGoogle Scholar
  129. Jin H, Wollbrink A, Yao R, Li Y, Caro J, Yang W (2016) A novel CAU-10-H MOF membrane for hydrogen separation under hydrothermal conditions. J Membr Sci 513:40–46.  https://doi.org/10.1016/J.MEMSCI.2016.04.017 CrossRefGoogle Scholar
  130. Kabir MJ, Chowdhury AA, Rasul MG (2015) Pyrolysis of municipal green waste: a modelling, simulation and experimental analysis. Energies 8:7522–7541.  https://doi.org/10.3390/en8087522 CrossRefGoogle Scholar
  131. Khan AA, de Jong W, Jansens PJ, Spliethoff H (2009) Biomass combustion in fluidized bed boilers: potential problems and remedies. Fuel Process Technol 90:21–50.  https://doi.org/10.1016/j.fuproc.2008.07.012 CrossRefGoogle Scholar
  132. Kiadehi AD, Taghizadeh M (2019) Fabrication, characterization, and application of palladium composite membrane on porous stainless steel substrate with NaY zeolite as an intermediate layer for hydrogen purification. Int J Hydrog Energy 44:2889–2904.  https://doi.org/10.1016/J.IJHYDENE.2018.12.058 CrossRefGoogle Scholar
  133. Kim SS, Xu N, Li A, Grace JR, Lim CJ, Ryi SK (2015) Development of a new porous metal support based on nickel and its application for Pd based composite membranes. Int J Hydrog Energy 40:3520–3527.  https://doi.org/10.1016/j.ijhydene.2014.08.075 CrossRefGoogle Scholar
  134. Kobayashi T, Xu KQ, Li YY, Inamori Y (2012) Evaluation of hydrogen and methane production from municipal solid wastes with different compositions of fat, protein, cellulosic materials and the other carbohydrates. Int J Hydrog Energy 37:15711–15718.  https://doi.org/10.1016/j.ijhydene.2012.05.044 CrossRefGoogle Scholar
  135. Kölling A, Zhang W, Neubauer Y, Ul Hai I, Oldenburg H, Schröder P, Liu H, Seilkopf A (2012) Gas cleaning strategies for biomass gasification product gas. Int J Low-Carbon Technol 7:69–74.  https://doi.org/10.1093/ijlct/ctr046 CrossRefGoogle Scholar
  136. Kurokawa H, Yakabe H, Yasuda I, Peters T, Bredesen R (2014) Inhibition effect of CO on hydrogen permeability of Pd-Ag membrane applied in a microchannel module configuration. Int J Hydrog Energy 39:17201–17209.  https://doi.org/10.1016/j.ijhydene.2014.08.056 CrossRefGoogle Scholar
  137. Lachén J, Durán P, Menéndez M, Peña JA, Herguido J (2018) Biogas to high purity hydrogen by methane dry reforming in TZFBR+MB and exhaustion by Steam-Iron Process. Techno–economic assessment. Int J Hydrog Energy 43:11663–11675.  https://doi.org/10.1016/j.ijhydene.2018.03.105 CrossRefGoogle Scholar
  138. Lee U, Chung JN, Ingley HA (2014) High-temperature steam gasification of municipal solid waste, rubber, plastic and wood. Energy Fuel 28:4573–4587.  https://doi.org/10.1021/ef500713j CrossRefGoogle Scholar
  139. Lewis AE, Kershner DC, Paglieri SN, Slepicka MJ, Way JD (2013) Pd-Pt/YSZ composite membranes for hydrogen separation from synthetic water-gas shift streams. J Membr Sci 437:257–264.  https://doi.org/10.1016/j.memsci.2013.02.056 CrossRefGoogle Scholar
  140. Lewis AE, Zhao H, Syed H, Wolden CA, Way JD (2014) PdAu and PdAuAg composite membranes for hydrogen separation from synthetic water-gas shift streams containing hydrogen sulfide. J Membr Sci 465:167–176.  https://doi.org/10.1016/j.memsci.2014.04.022 CrossRefGoogle Scholar
  141. Li A, Grace JR, Lim CJ (2007) Preparation of thin Pd-based composite membrane on planar metallic substrate: part I: pre-treatment of porous stainless steel substrate. J Membr Sci 298:175–181.  https://doi.org/10.1016/j.memsci.2007.04.016 CrossRefGoogle Scholar
  142. Li P, Wang Z, Qiao Z, Liu Y, Cao X, Li W, Wang J, Wang S (2015) Recent developments in membranes for efficient hydrogen purification. J Membr Sci 495:130–168.  https://doi.org/10.1016/j.memsci.2015.08.010 CrossRefGoogle Scholar
  143. Liu B, Ren N, Ding J, Guo W, Cao G (2011) Biological hydrogen production by dark fermentation: challenges and prospects towards scaled-up production. Curr Opin Biotechnol 22:365–370.  https://doi.org/10.1016/j.copbio.2011.04.022 CrossRefGoogle Scholar
  144. Lu GQ, da Costa JCD, Duke M, Giessler S, Socolow R, Williams RH, Kreutz T (2007) Inorganic membranes for hydrogen production and purification: a critical review and perspective. J Colloid Interface Sci 314:589–603.  https://doi.org/10.1016/j.jcis.2007.05.067 CrossRefGoogle Scholar
  145. Lu H, Zhu L, Wang W, Yang W, Tong J (2015) Pd and Pd-Ni alloy composite membranes fabricated by electroless plating method on capillary α-Al2O3 substrates. Int J Hydrog Energy 40:3548–3556.  https://doi.org/10.1016/j.ijhydene.2014.09.121 CrossRefGoogle Scholar
  146. Luo S, Zhou Y, Yi C (2012) Syngas production by catalytic steam gasification of municipal solid waste in fixed-bed reactor. Energy 44:391–395.  https://doi.org/10.1016/j.energy.2012.06.016 CrossRefGoogle Scholar
  147. Mabande GTP, Pradhan G, Schwieger W, Hanebuth M, Dittmeyer R, Selvam T, Zampieri A, Baser H, Herrmann R (2004) A study of Silicalite-1 and Al-ZSM-5 membrane synthesis on stainless steel supports. Microporous Mesoporous Mater 75:209–220.  https://doi.org/10.1016/j.micromeso.2004.07.009 CrossRefGoogle Scholar
  148. Maggi R, Delmon B (1994) Comparison between ‘slow’ and ‘flash’ pyrolysis oils from biomass. Fuel 73:671–677.  https://doi.org/10.1016/0016-2361(94)90007-8 CrossRefGoogle Scholar
  149. Mardilovich PP, She Y, Ma YH, Rei M-H (1998) Defect-free palladium membranes on porous stainless-steel support. AIChE J 44:310–322.  https://doi.org/10.1002/aic.690440209 CrossRefGoogle Scholar
  150. Maroño M, Sánchez-Hervás JM, Ruiz E, Cabanillas A (2008) Study of the suitability of a Pt based catalyst for the upgrading of a biomass gasification syngas stream via the WGS reaction. Catal Lett 126:369–426CrossRefGoogle Scholar
  151. Maroño M, Sánchez JM, Ruiz E (2010) Hydrogen-rich gas production from oxygen pressurized gasification of biomass using a Fe-Cr Water Gas Shift catalyst. Int J Hydrog Energy 35:37–45.  https://doi.org/10.1016/j.ijhydene.2009.10.078 CrossRefGoogle Scholar
  152. Maroño M, Torreiro Y, Montenegro L, Sánchez J (2014a) Lab-scale tests of different materials for the selection of suitable sorbents for CO2 capture with H2 production in IGCC processes. Fuel 116:861–870.  https://doi.org/10.1016/j.fuel.2013.03.067 CrossRefGoogle Scholar
  153. Maroño M, Barreiro MM, Torreiro Y, Sánchez JM (2014b) Performance of a hybrid system sorbent-catalyst-membrane for CO2 capture and H2 production under pre-combustion operating conditions. Catal Today 236:77–85.  https://doi.org/10.1016/j.cattod.2013.11.003 CrossRefGoogle Scholar
  154. Maroño M, Torreiro Y, Cillero D, Sánchez JM (2015) Experimental studies of CO2 capture by a hybrid catalyst/adsorbent system applicable to IGCC processes. Appl Therm Eng 74:28–35.  https://doi.org/10.1016/j.applthermaleng.2014.02.068 CrossRefGoogle Scholar
  155. Martinez-Diaz D, Sanz R, Calles JA, Alique D (2019) H2 permeation increase of electroless pore-plated Pd/PSS membranes with CeO2 intermediate barriers. Sep Purif Technol 216:16–24.  https://doi.org/10.1016/J.SEPPUR.2019.01.076 CrossRefGoogle Scholar
  156. Mateos-Pedrero C, Soria MA, Rodríguez-Ramos I, Guerrero-Ruiz A (2010) Modifications of porous stainless steel previous to the synthesis of Pd membranes. In: Stud. Surf. Sci. Catal, pp 779–783.  https://doi.org/10.1016/S0167-2991(10)75159-4 CrossRefGoogle Scholar
  157. Matsakas L, Rova U, Christakopoulos P (2015) Sequential parametric optimization of methane production from different sources of forest raw material. Front Microbiol 6:1–10.  https://doi.org/10.3389/fmicb.2015.01163 CrossRefGoogle Scholar
  158. Mattox DM, Mattox DM (2010) Chapter 6 – Vacuum evaporation and vacuum deposition. In: Handb. Phys. Vap. Depos. Process, pp 195–235.  https://doi.org/10.1016/B978-0-8155-2037-5.00006-X CrossRefGoogle Scholar
  159. Medrano JA, Fernandez E, Melendez J, Parco M, Tanaka DAP, van Sint Annaland M, Gallucci F (2016) Pd-based metallic supported membranes: high-temperature stability and fluidized bed reactor testing. Int J Hydrog Energy 41:8706–8718.  https://doi.org/10.1016/j.ijhydene.2015.10.094 CrossRefGoogle Scholar
  160. Mei W, Du Y, Wu T, Gao F, Wang B, Duan J, Zhou J, Zhou R (2018) High-flux CHA zeolite membranes for H2 separations. J Membr Sci 565:358–369.  https://doi.org/10.1016/j.memsci.2018.08.025 CrossRefGoogle Scholar
  161. Mejdell AL, Jøndahl M, Peters TA, Bredesen R, Venvik HJ (2009) Effects of CO and CO2 on hydrogen permeation through a ∼3 μm Pd/Ag 23 wt.% membrane employed in a microchannel membrane configuration. Sep Purif Technol 68:178–184.  https://doi.org/10.1016/j.seppur.2009.04.025 CrossRefGoogle Scholar
  162. Melendez J, Fernandez E, Gallucci F, van Sint Annaland M, Arias PL, Tanaka DAP (2017a) Preparation and characterization of ceramic supported ultra-thin (~1 μm) Pd-Ag membranes. J Membr Sci 528:12–23.  https://doi.org/10.1016/j.memsci.2017.01.011 CrossRefGoogle Scholar
  163. Melendez J, de Nooijer N, Coenen K, Fernandez E, Viviente JL, van Sint Annaland M, Arias PL, Tanaka DAP, Gallucci F (2017b) Effect of Au addition on hydrogen permeation and the resistance to H2S on Pd-Ag alloy membranes. J Membr Sci 542:329–341.  https://doi.org/10.1016/j.memsci.2017.08.029 CrossRefGoogle Scholar
  164. Mellor JR, Copperthwaite RG, Coville NJ (1997) The selective influence of sulfur on the performance of novel cobalt-based water-gas shift catalysts. Appl Catal A Gen 164:69–79.  https://doi.org/10.1016/S0926-860X(97)00158-0 CrossRefGoogle Scholar
  165. Milne TA, Evans RJ (1998) Biomass gasifier “tars”: their nature, formation, and conversion. EEUU, Golden. https://www.nrel.gov/docs/fy99osti/25357.pdf CrossRefGoogle Scholar
  166. Mivechian A, Pakizeh M (2013) Performance comparison of different separation systems for H2 recovery from catalytic reforming unit off-gas streams. Chem Eng Technol 36:519–527.  https://doi.org/10.1002/ceat.201200558 CrossRefGoogle Scholar
  167. Moriani A, Bruni G, Incelli M, Santucci A, Liger K, Troulay M, Tosti S (2018) Innovative joining of Pd-Ag permeator tubes. Fusion Eng Des 136.  https://doi.org/10.1016/j.fusengdes.2018.02.075 CrossRefGoogle Scholar
  168. Muraviev DN, Orekhova NV, Mironova EY, Yaroslavtsev AB, Ermilova MM (2014) Production of high purity hydrogen by ethanol steam reforming in membrane reactor. Catal Today 236:64–69.  https://doi.org/10.1016/j.cattod.2014.01.014 CrossRefGoogle Scholar
  169. Navinšek B, Panjan P, Milošev I (1999) PVD coatings as an environmentally clean alternative to electroplating and electroless processes. Surf Coat Technol 116:476–487.  https://doi.org/10.1016/S0257-8972(99)00145-0 CrossRefGoogle Scholar
  170. Nayak A, Bhushan B (2019) An overview of the recent trends on the waste valorization techniques for food wastes. J Environ Manag 233:352–370.  https://doi.org/10.1016/J.JENVMAN.2018.12.041 CrossRefGoogle Scholar
  171. Nekhamkina O, Sheintuch M (2016) Approximate models of concentration-polarization in Pd-membrane separators. Fast numerical analysis. J Membr Sci 500:136–150.  https://doi.org/10.1016/J.MEMSCI.2015.11.027 CrossRefGoogle Scholar
  172. Neubauer Y (2011) Strategies for tar reduction in fuel-gases and synthesis-gases from biomass gasification. J Sustain Energy Environ 2011:67–71Google Scholar
  173. Nikolaidis P, Poullikkas A (2017) A comparative overview of hydrogen production processes. Renew Sust Energ Rev 67:597–611.  https://doi.org/10.1016/j.rser.2016.09.044 CrossRefGoogle Scholar
  174. Nikoli DD, Kikkinides ES (2015) Modelling and optimization of hybrid PSA/membrane separation processes. Adsorption 21:283–305.  https://doi.org/10.1007/s10450-015-9670-z CrossRefGoogle Scholar
  175. Nilsson S, Gómez-Barea A, Fuentes-Cano D, Ollero P (2012) Gasification of biomass and waste in a staged fluidized bed gasifier: modeling and comparison with one-stage units. Fuel 97:730–740.  https://doi.org/10.1016/j.fuel.2012.02.044 CrossRefGoogle Scholar
  176. Nitsos C, Matsakas L, Triantafyllidis K, Rova U, Christakopoulos P (2015) Evaluation of mediterranean agricultural residues as a potential feedstock for the production of biogas via anaerobic fermentation. Biomed Res Int 2015.  https://doi.org/10.1155/2015/171635 CrossRefGoogle Scholar
  177. Nowakowski R, Lisowski P, Pieta I, Serwicka E, Kazmierczuk A, Epling W (2018) Waste into fuel—catalyst and process development for MSW valorisation. Catalysts 8:113.  https://doi.org/10.3390/catal8030113 CrossRefGoogle Scholar
  178. Onay O, Kockar OM (2003) Slow, fast and flash pyrolysis of rapeseed. Renew Energy 28:2417–2433.  https://doi.org/10.1016/S0960-1481(03)00137-X CrossRefGoogle Scholar
  179. Otto RB, De Souza SS, Ferreira LRA, Ando Junior OH, Silva FP, De Souza SNM (2018) Review of the energy potential of the residual biomass for the distributed generation in Brazil. Renew Sust Energ Rev 94:440–455.  https://doi.org/10.1016/j.rser.2018.06.034 CrossRefGoogle Scholar
  180. Panagiotopoulou P, Kondarides DI (2007) A comparative study of the water-gas shift activity of Pt catalysts supported on single (MOx) and composite (MOx/Al2O3, MOx/TiO2) metal oxide carriers. Catal Today 127:319–329.  https://doi.org/10.1016/j.cattod.2007.05.010 CrossRefGoogle Scholar
  181. Patki NS, Lundin S-T, Way JD (2016) Rapid annealing of sequentially plated Pd-Au composite membranes using high pressure hydrogen. J Membr Sci 513:197–205.  https://doi.org/10.1016/j.memsci.2016.04.034 CrossRefGoogle Scholar
  182. Patki NS, Lundin STB, Way JD (2018) Apparent activation energy for hydrogen permeation and its relation to the composition of homogeneous PdAu alloy thin-film membranes. Sep Purif Technol 191.  https://doi.org/10.1016/j.seppur.2017.09.047 CrossRefGoogle Scholar
  183. Penev M, Melaina MW, Antonia O (2013) Blending hydrogen into natural gas pipeline networks: a review of key issues. EEUU, Golden. https://www.nrel.gov/docs/fy13osti/51995.pdf Google Scholar
  184. Perry JD, Nagai K, Koros WJ (2006) Polymer membranes for hydrogen separations. MRS Bull 31:745–749.  https://doi.org/10.1557/mrs2006.187 CrossRefGoogle Scholar
  185. Peters TA, Stange M, Bredesen R (2011a) On the high pressure performance of thin supported Pd–23%Ag membranes—evidence of ultrahigh hydrogen flux after air treatment. J Membr Sci 378:28–34.  https://doi.org/10.1016/j.memsci.2010.11.022 CrossRefGoogle Scholar
  186. Peters TA, Kaleta T, Stange M, Bredesen R (2011b) Development of thin binary and ternary Pd-based alloy membranes for use in hydrogen production. J Membr Sci 383:124–134.  https://doi.org/10.1016/j.memsci.2011.08.050 CrossRefGoogle Scholar
  187. Peters TA, Kaleta T, Stange M, Bredesen R (2012) Hydrogen transport through a selection of thin Pd-alloy membranes: membrane stability, H2S inhibition, and flux recovery in hydrogen and simulated {WGS} mixtures. Catal Today 193:8–19.  https://doi.org/10.1016/j.cattod.2011.12.028 CrossRefGoogle Scholar
  188. Peters TA, Kaleta T, Stange M, Bredesen R (2013) Development of ternary Pd–Ag–TM alloy membranes with improved sulphur tolerance. J Membr Sci 429:448–458.  https://doi.org/10.1016/j.memsci.2012.11.062 CrossRefGoogle Scholar
  189. Peters TA, Stange M, Bredesen R (2015) 2 – Fabrication of palladium-based membranes by magnetron sputtering. In: Doukelis A, Panopoulos K, Koumanakos A, Kakaras E (eds) Palladium Membr. Technol. Hydrog. Prod. Carbon Capture Other Appl. Woodhead Publishing, pp 25–41.  https://doi.org/10.1533/9781782422419.1.25. CrossRefGoogle Scholar
  190. Pinacci P, Basile A (2013) 3 – Palladium-based composite membranes for hydrogen separation in membrane reactors BT. In: Handbook of Membrane Reactors, Woodhead Publ. Ser. Energy. Woodhead Publishing, pp 149–182.  https://doi.org/10.1533/9780857097330.1.149 CrossRefGoogle Scholar
  191. Pinacci P, Drago F (2012) Influence of the support on permeation of palladium composite membranes in presence of sweep gas. Catal Today 193:186–193.  https://doi.org/10.1016/j.cattod.2012.02.041 CrossRefGoogle Scholar
  192. Plazaola AA, Tanaka DAP, Annaland MVS, Gallucci F (2017) Recent advances in pd-based membranes for membrane reactors. Molecules 22:1–53.  https://doi.org/10.3390/molecules22010051 CrossRefGoogle Scholar
  193. Ponzio A, Kalisz S, Blasiak W (2006) Effect of operating conditions on tar and gas composition in high temperature air/steam gasification (HTAG) of plastic containing waste. Fuel Process Technol 87:223–233.  https://doi.org/10.1016/j.fuproc.2005.08.002 CrossRefGoogle Scholar
  194. Pöschl M, Ward S, Owende P (2010) Evaluation of energy efficiency of various biogas production and utilization pathways. Appl Energy 87:3305–3321.  https://doi.org/10.1016/j.apenergy.2010.05.011 CrossRefGoogle Scholar
  195. Power Technology, Power from waste – the world’s biggest biomass power plants (2014). https://www.power-technology.com/features/featurepower-from-waste-the-worlds-biggest-biomass-power-plants-4205990/
  196. Pujari M, Agarwal A, Uppaluri R, Verma A (2014) Role of electroless nickel diffusion barrier on the combinatorial plating characteristics of dense Pd/Ni/PSS composite membranes. Appl Surf Sci 305:658–664.  https://doi.org/10.1016/j.apsusc.2014.03.156 CrossRefGoogle Scholar
  197. Querino PS, Bispo JRC, Rangel MDC (2005) The effect of cerium on the properties of Pt/ZrO2 catalysts in the WGSR. Catal Today 107–108:920–925.  https://doi.org/10.1016/j.cattod.2005.07.032 CrossRefGoogle Scholar
  198. Rafieenia R, Lavagnolo MC, Pivato A (2018) Pre-treatment technologies for dark fermentative hydrogen production: current advances and future directions. Waste Manag 71:734–748.  https://doi.org/10.1016/j.wasman.2017.05.024 CrossRefGoogle Scholar
  199. Rahimpour MR, Samimi F, Babapoor A, Tohidian T, Mohebi S (2017) Palladium membranes applications in reaction systems for hydrogen separation and purification: a review. Chem Eng Process Process Intensif 121:24–49.  https://doi.org/10.1016/j.cep.2017.07.021 CrossRefGoogle Scholar
  200. Ramachandran PA, Chompupun T, Kanhari C, Vatanatham T, Limtrakul S (2018) Experiments, modeling and scaling-up of membrane reactors for hydrogen production via steam methane reforming. Chem Eng Process – Process Intensif 134:124–140.  https://doi.org/10.1016/j.cep.2018.10.007 CrossRefGoogle Scholar
  201. Rauch R, Hrbek J, Hofbauer H (2014) Biomass gasification for synthesis gas production and applications of the syngas. Wiley Interdiscip Rev Energy Environ 3:343–362.  https://doi.org/10.1002/wene.97 CrossRefGoogle Scholar
  202. Rauch R, Musmarra D, Malits M, Chianese S, Loipersböck J, Hofbauer H, Molino A (2015) Hydrogen from the high temperature water gas shift reaction with an industrial Fe/Cr catalyst using biomass gasification tar rich synthesis gas. Fuel Process Technol 132:39–48.  https://doi.org/10.1016/j.fuproc.2014.12.034 CrossRefGoogle Scholar
  203. Rezakazemi M, Sadrzadeh M, Matsuura T (2018) Thermally stable polymers for advanced high-performance gas separation membranes. Prog Energy Combust Sci 66:1–41.  https://doi.org/10.1016/J.PECS.2017.11.002 CrossRefGoogle Scholar
  204. Rocha C, Soria MA, Madeira LM (2017) Steam reforming of olive oil mill wastewater with in situ hydrogen and carbon dioxide separation – thermodynamic analysis. Fuel 207:449–460.  https://doi.org/10.1016/J.FUEL.2017.06.111 CrossRefGoogle Scholar
  205. Rodríguez-Félix E, Contreras-Ramos SM, Davila-Vazquez G, Rodríguez-Campos J, Marino-Marmolejo EN (2018) Identification and quantification of volatile compounds found in vinasses from two different processes of Tequila production. Energies 11:12–15.  https://doi.org/10.3390/en11030490 CrossRefGoogle Scholar
  206. Ruan X, Li B, Dai Y, Jiang X, He G (2016) Pressure swing adsorption/membrane hybrid processes for hydrogen purification with a high recovery. Front Chem Sci Eng 10:255–264.  https://doi.org/10.1007/s11705-016-1567-1 CrossRefGoogle Scholar
  207. Ryi S-K, Park J-S, Kim S-H, Kim D-W, Cho K-I (2008) Formation of a defect-free Pd–Cu–Ni ternary alloy membrane on a polished porous nickel support (PNS). J Membr Sci 318:346–354.  https://doi.org/10.1016/j.memsci.2008.02.055 CrossRefGoogle Scholar
  208. Ryi S-K, Xu N, Li A, Lim CJ, Grace JR (2010) Electroless Pd membrane deposition on alumina modified porous Hastelloy substrate with EDTA-free bath. Int J Hydrog Energy 35:2328–2335.  https://doi.org/10.1016/j.ijhydene.2010.01.054 CrossRefGoogle Scholar
  209. Ryi S-K, Park J-S, Hwang K-R, Lee C-B, Lee S-W (2011) Repair of Pd-based composite membrane by polishing treatment. Int J Hydrog Energy.  https://doi.org/10.1016/j.ijhydene.2011.07.120 CrossRefGoogle Scholar
  210. Ryi S-K, Ahn H-S, Park J-S, Kim D-W (2014) Pd–Cu alloy membrane deposited on CeO2 modified porous nickel support for hydrogen separation. Int J Hydrog Energy 39:4698–4703.  https://doi.org/10.1016/j.ijhydene.2013.11.031 CrossRefGoogle Scholar
  211. Ryms M, Januszewicz K, Lewandowski WM, Klugmann-Radziemska E (2013) Pyrolysis process of whole waste tires as A biomass energy recycling. Ecol Chem Eng S 20:93–107.  https://doi.org/10.2478/eces-2013-0007 CrossRefGoogle Scholar
  212. Saidi M (2018) Application of catalytic membrane reactor for pure hydrogen production by flare gas recovery as a novel approach. Int J Hydrog Energy 43:14834–14847.  https://doi.org/10.1016/j.ijhydene.2018.05.156 CrossRefGoogle Scholar
  213. Salehi M, Søgaard M, Esposito V, Foghmoes SPV, Persoon ES, Schroeder M, Hendriksen PV (2017) Oxygen permeation and stability study of (La0.6Ca0.4)0.98(Co0.8Fe0.2)O3-δ membranes. J Membr Sci 542:245–253.  https://doi.org/10.1016/j.memsci.2017.07.050 CrossRefGoogle Scholar
  214. Sánchez JM, Barreiro MM, Maroño M (2011) Hydrogen enrichment and separation from synthesis gas by the use of a membrane reactor. Biomass Bioenergy 35.  https://doi.org/10.1016/j.biombioe.2011.03.037 CrossRefGoogle Scholar
  215. Sanlisoy A, Carpinlioglu MO (2017) A review on plasma gasification for solid waste disposal. Int J Hydrogen Energy 42:1361–1365.  https://doi.org/10.1016/j.ijhydene.2016.06.008 CrossRefGoogle Scholar
  216. Santucci A, Borgognoni F, Vadrucci M, Tosti S (2013) Testing of dense Pd–Ag tubes: effect of pressure and membrane thickness on the hydrogen permeability. J Membr Sci 444:378–383.  https://doi.org/10.1016/j.memsci.2013.05.058 CrossRefGoogle Scholar
  217. Sanz R, Calles JA, Alique D, Furones L, Ordóñez S, Marín P, Corengia P, Fernandez E (2011) Preparation, testing and modelling of a hydrogen selective Pd/YSZ/SS composite membrane. Int J Hydrog Energy 36:15783–15793.  https://doi.org/10.1016/j.ijhydene.2011.08.102 CrossRefGoogle Scholar
  218. Sanz R, Calles JA, Alique D, Furones L (2012) New synthesis method of Pd membranes over tubular PSS supports via “pore-plating” for hydrogen separation processes. Int J Hydrog Energy 37:18476–18485.  https://doi.org/10.1016/j.ijhydene.2012.09.084 CrossRefGoogle Scholar
  219. Sanz R, Calles JA, Ordóñez S, Marín P, Alique D, Furones L (2013) Modelling and simulation of permeation behaviour on Pd/PSS composite membranes prepared by “pore-plating” method. J Membr Sci 446:410–421.  https://doi.org/10.1016/j.memsci.2013.06.060 CrossRefGoogle Scholar
  220. Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37:19–27.  https://doi.org/10.1016/j.renene.2011.06.045 CrossRefGoogle Scholar
  221. Sato T, Suzuki T, Aketa M, Ishiyama Y, Mimura K, Itoh N (2010) Steam reforming of biogas mixtures with a palladium membrane reactor system. Chem Eng Sci 65:451–457.  https://doi.org/10.1016/j.ces.2009.04.013 CrossRefGoogle Scholar
  222. Scott K, Scott K (1995) Membrane materials, preparation and characterisation. Handb Ind Membr:187–269.  https://doi.org/10.1016/B978-185617233-2/50005-2 CrossRefGoogle Scholar
  223. Seelam PK, Piemonte V, De Falco M, Liguori S, Pinacci P, Calabrò V, Iulianelli A, Keiski R, Tosti S, Huuhtanen M, Basile A (2012) Hydrogen production from bio-ethanol steam reforming reaction in a Pd/PSS membrane reactor. Catal Today 193:42–48.  https://doi.org/10.1016/j.cattod.2012.01.008 CrossRefGoogle Scholar
  224. Shen Y, Zhao P, Ma D, Yoshikawa K (2014) Tar in-situ conversion for biomass gasification via mixing simulation with rice husk char-supported catalysts. Energy Procedia 61:1549–1552.  https://doi.org/10.1016/j.egypro.2014.12.167 CrossRefGoogle Scholar
  225. Sheth PN, Babu BV (2010) Production of hydrogen energy through biomass (waste wood) gasification. Int J Hydrog Energy 35:10803–10810.  https://doi.org/10.1016/j.ijhydene.2010.03.009 CrossRefGoogle Scholar
  226. Shi X, Jung KW, Kim DH, Ahn YT, Shin HS (2011) Direct fermentation of Laminaria japonica for biohydrogen production by anaerobic mixed cultures. Int J Hydrog Energy 36:5857–5864.  https://doi.org/10.1016/j.ijhydene.2011.01.125 CrossRefGoogle Scholar
  227. Silva FSA, Benachour M, Abreu CAM (2015) Evaluating hydrogen production in biogas reforming in a membrane reactor. Braz J Chem Eng 32:201–210.  https://doi.org/10.1590/0104-6632.20150321s00002820 CrossRefGoogle Scholar
  228. Singh Yadav V, Vinoth R, Yadav D (2018) Bio-hydrogen production from waste materials: a review. MATEC Web Conf 192:02020.  https://doi.org/10.1051/matecconf/201819202020 CrossRefGoogle Scholar
  229. Sircar S, Golden TC (2000) Purification of hydrogen by pressure swing adsorption. Sep Sci Technol 35:667–687.  https://doi.org/10.1081/SS-100100183 CrossRefGoogle Scholar
  230. Soomro A, Chen S, Ma S, Xiang W (2018) Catalytic activities of nickel, dolomite, and olivine for tar removal and H2-enriched gas production in biomass gasification process. Energy Environ 29:839–867.  https://doi.org/10.1177/0958305X18767848 CrossRefGoogle Scholar
  231. Soria MA, Barros D, Madeira LM (2019) Hydrogen production through steam reforming of bio-oils derived from biomass pyrolysis: thermodynamic analysis including in situ CO2 and/or H2 separation. Fuel 244:184–195.  https://doi.org/10.1016/j.fuel.2019.01.156 CrossRefGoogle Scholar
  232. Steil MC, Fouletier J, Geffroy PM (2017) Surface exchange polarization vs. gas concentration polarization in permeation through mixed ionic-electronic membranes. J Membr Sci 541:457–464.  https://doi.org/10.1016/j.memsci.2017.07.028 CrossRefGoogle Scholar
  233. Stephen AJ, Archer SA, Orozco RL, Macaskie LE (2017) Advances and bottlenecks in microbial hydrogen production. Microb Biotechnol 10:1120–1127.  https://doi.org/10.1111/1751-7915.12790 CrossRefGoogle Scholar
  234. Strugova DV, Zadorozhnyy MY, Berdonosova EA, Yablokova MY, Konik PA, Zheleznyi MV, Semenov DV, Milovzorov GS, Padaki M, Kaloshkin SD, Zadorozhnyy VY, Klyamkin SN (2018) Novel process for preparation of metal-polymer composite membranes for hydrogen separation. Int J Hydrog Energy 43:12146–12152.  https://doi.org/10.1016/J.IJHYDENE.2018.04.183 CrossRefGoogle Scholar
  235. Sumrunronnasak S, Tantayanon S, Kiatgamolchai S (2017) Influence of layer compositions and annealing conditions on complete formation of ternary PdAgCu alloys prepared by sequential electroless and electroplating methods. Mater Chem Phys 185:98–103.  https://doi.org/10.1016/j.matchemphys.2016.10.010 CrossRefGoogle Scholar
  236. Sun Q, Li H, Yan J, Liu L, Yu Z, Yu X (2015) Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renew Sust Energ Rev 51:521–532.  https://doi.org/10.1016/j.rser.2015.06.029 CrossRefGoogle Scholar
  237. Swami Nathan S, Mallikarjuna JM, Ramesh A (2010) An experimental study of the biogas-diesel HCCI mode of engine operation. Energy Convers Manag 51:1347–1353.  https://doi.org/10.1016/j.enconman.2009.09.008 CrossRefGoogle Scholar
  238. Tanaka DAP, Tanco MAL, Okazaki J, Wakui Y, Mizukami F, Suzuki TM (2008) Preparation of “pore-fill” type Pd–YSZ–γ-Al2O3 composite membrane supported on α-Al2O3 tube for hydrogen separation. J Membr Sci 320:436–441.  https://doi.org/10.1016/j.memsci.2008.04.044 CrossRefGoogle Scholar
  239. Tang L, Huang H, Hao H, Zhao K (2013) Development of plasma pyrolysis/gasification systems for energy efficient and environmentally sound waste disposal. J Electrostat 71:839–847.  https://doi.org/10.1016/j.elstat.2013.06.007 CrossRefGoogle Scholar
  240. Tarditi AM, Cornaglia LM (2011) Novel PdAgCu ternary alloy as promising materials for hydrogen separation membranes: synthesis and characterization. Surf Sci 605:62–71.  https://doi.org/10.1016/j.susc.2010.10.001 CrossRefGoogle Scholar
  241. Tarditi A, Gerboni C, Cornaglia L (2013) PdAu membranes supported on top of vacuum-assisted ZrO2-modified porous stainless steel substrates. J Membr Sci 428:1–10.  https://doi.org/10.1016/j.memsci.2012.10.029 CrossRefGoogle Scholar
  242. Tarditi AM, Imhoff C, Braun F, Miller JB, Gellman AJ, Cornaglia L (2015) PdCuAu ternary alloy membranes: Hydrogen permeation properties in the presence of H2S. J Membr Sci 479:246–255.  https://doi.org/10.1016/j.memsci.2014.12.030 CrossRefGoogle Scholar
  243. Tarditi AM, Bosko ML, Cornaglia LM (2017) Electroless plating of Pd binary and ternary alloys and surface characteristics for application in hidrogen separation. Elsevier, Oxford, pp 1–24.  https://doi.org/10.1016/B978-0-12-803581-8.09166-9 CrossRefGoogle Scholar
  244. Thanuja MY, Anupama C, Ranganath SH (2018) Bioengineered cellular and cell membrane-derived vehicles for actively targeted drug delivery: so near and yet so far. Adv Drug Deliv Rev 132:57–80.  https://doi.org/10.1016/j.addr.2018.06.012 CrossRefGoogle Scholar
  245. Toledo-Alarcón J, Capson-Tojo G, Marone A, Paillet F, Júnior ADNF, Chatellard L, Bernet N, Trably E (2018) Basics of bio-hydrogen production by dark fermentation BT. In: Liao Q, Chang J, Herrmann C, Xia A (eds) Bioreactors for microbial biomass and energy conversion. Springer Singapore, Singapore, pp 199–220.  https://doi.org/10.1007/978-981-10-7677-0_6 CrossRefGoogle Scholar
  246. Torreiro Y, Maroño M, Sánchez JM (2017) Study of sour water gas shift using hydrotalcite based sorbents. Fuel 187:58–67.  https://doi.org/10.1016/j.fuel.2016.09.038 CrossRefGoogle Scholar
  247. Tosti S (2010) Overview of Pd-based membranes for producing pure hydrogen and state of art at ENEA laboratories. Int J Hydrog Energy 35:12650–12659.  https://doi.org/10.1016/j.ijhydene.2010.07.116 CrossRefGoogle Scholar
  248. Tosti S, Basile A, Bettinali L, Borgognoni F, Gallucci F, Rizzello C (2008) Design and process study of Pd membrane reactors. Int J Hydrog Energy 33:5098–5105.  https://doi.org/10.1016/j.ijhydene.2008.05.031 CrossRefGoogle Scholar
  249. Tosti S, Zerbo M, Basile A, Calabrò V, Borgognoni F, Santucci A (2013a) Pd-based membrane reactors for producing ultra pure hydrogen: oxidative reforming of bio-ethanol. Int J Hydrog Energy 38:701–707.  https://doi.org/10.1016/j.ijhydene.2012.04.144 CrossRefGoogle Scholar
  250. Tosti S, Accetta C, Fabbricino M, Sansovini M, Pontoni L (2013b) Reforming of olive mill wastewater through a Pd-membrane reactor. Int J Hydrog Energy 38:10252–10259.  https://doi.org/10.1016/j.ijhydene.2013.06.027 CrossRefGoogle Scholar
  251. Tosti S, Cavezza C, Fabbricino M, Pontoni L, Palma V, Ruocco C (2015) Production of hydrogen in a Pd-membrane reactor via catalytic reforming of olive mill wastewater. Chem Eng J 275:366–373.  https://doi.org/10.1016/j.cej.2015.04.001 CrossRefGoogle Scholar
  252. Tosti S, Fabbricino M, Pontoni L, Palma V, Ruocco C (2016) Catalytic reforming of olive mill wastewater and methane in a Pd-membrane reactor. Int J Hydrog Energy 41:5465–5474.  https://doi.org/10.1016/j.ijhydene.2016.02.014 CrossRefGoogle Scholar
  253. Truus de Vrije PAMC (2018) Production of butanol and hydrogen by fermentation techniques using steam treated municipal solid waste. www.wur.eu/wfbr
  254. Tu X, Williams PT, Gadkari S, Nahil MA, Gu S, Liu SY, Mei DH (2017) Hybrid plasma-catalytic steam reforming of toluene as a biomass tar model compound over Ni/Al2O3 catalysts. Fuel Process Technol 166:269–275.  https://doi.org/10.1016/j.fuproc.2017.06.001 CrossRefGoogle Scholar
  255. Tucho WM, Venvik HJ, Stange M, Walmsley JC, Holmestad R, Bredesen R (2009) Effects of thermal activation on hydrogen permeation properties of thin, self-supported Pd/Ag membranes. Sep Purif Technol 68:403–410.  https://doi.org/10.1016/j.seppur.2009.06.015 CrossRefGoogle Scholar
  256. van Dijk HAJ, Walspurger S, Cobden PD, van den Brink RW, de Vos FG (2011) Testing of hydrotalcite-based sorbents for CO2 and H2S capture for use in sorption enhanced water gas shift. Int J Greenhouse Gas Control 5:505–511.  https://doi.org/10.1016/j.ijggc.2010.04.011 CrossRefGoogle Scholar
  257. Van Gestel T, Hauler F, Bram M, Meulenberg WA, Buchkremer HP, Van Gestel T, Hauler F, Bram M, Meulenberg WA, Buchkremer HP (2014) Synthesis and characterization of hydrogen-selective sol–gel SiO2 membranes supported on ceramic and stainless steel supports. Sep Purif Technol 121:20–29.  https://doi.org/10.1016/j.seppur.2013.10.035 CrossRefGoogle Scholar
  258. Vásquez Castillo JM, Sato T, Itoh N (2015) Effect of temperature and pressure on hydrogen production from steam reforming of biogas with Pd-Ag membrane reactor. Int J Hydrog Energy 40:3582–3591.  https://doi.org/10.1016/j.ijhydene.2014.11.053 CrossRefGoogle Scholar
  259. Voss C (2005) Applications of pressure swing adsorption technology. Adsorption 11:527–529.  https://doi.org/10.1007/s10450-005-5979-3 CrossRefGoogle Scholar
  260. Wald K, Kubik J, Paciulli D, Talukder M, Nott J, Massicotte F, Rebeiz K, Nesbit S, Craft A (2016) Effects of multiple hydrogen absorption/desorption cycles on the mechanical properties of the alloy system palladium/silver (wt% = 10–25). Scr Mater 117:6–10.  https://doi.org/10.1016/j.scriptamat.2016.02.017 CrossRefGoogle Scholar
  261. Wang J, Wan W (2009) Factors influencing fermentative hydrogen production: a review. Int J Hydrog Energy 34:799–811.  https://doi.org/10.1016/j.ijhydene.2008.11.015 CrossRefGoogle Scholar
  262. Wang D, Czernik S, Chornet E (1998) Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oils. Energy Fuels 12:19–24.  https://doi.org/10.1021/ef970102j CrossRefGoogle Scholar
  263. Wang WP, Thomas S, Zhang XL, Pan XL, Yang WS, Xiong GX (2006) H2/N2 gaseous mixture separation in dense Pd/α-Al2O3 hollow fiber membranes: Experimental and simulation studies. Sep Purif Technol 52:177–185.  https://doi.org/10.1016/j.seppur.2006.04.007 CrossRefGoogle Scholar
  264. Wang J, Xu S, Xiao B, Xu M, Yang L, Liu S, Hu Z, Guo D, Hu M, Ma C, Luo S (2013) Influence of catalyst and temperature on gasification performance of pig compost for hydrogen-rich gas production. Int J Hydrog Energy 38:14200–14207.  https://doi.org/10.1016/j.ijhydene.2013.08.075 CrossRefGoogle Scholar
  265. Wang N, Chen D, Arena U, He P (2017) Hot char-catalytic reforming of volatiles from MSW pyrolysis. Appl Energy 191:111–124.  https://doi.org/10.1016/j.apenergy.2017.01.051 CrossRefGoogle Scholar
  266. Wang S, Yang X, Xu S, Li B (2018) Investigation into enhancing reforming of biomass-derived glycerol in a membrane reactor with hydrogen separation. Fuel Process Technol 178:283–292.  https://doi.org/10.1016/j.fuproc.2018.06.004 CrossRefGoogle Scholar
  267. Wee JH (2007) Applications of proton exchange membrane fuel cell systems. Renew Sust Energ Rev 11:1720–1738.  https://doi.org/10.1016/j.rser.2006.01.005 CrossRefGoogle Scholar
  268. Williams PT, Besler S, Taylor DT (1990) The pyrolysis of scrap automotive tyres: the influence of temperature and heating rate on product composition. Fuel 69:1474–1482.  https://doi.org/10.1016/0016-2361(90)90193-T CrossRefGoogle Scholar
  269. World Bioenergy Association, 2019 (n.d.). https://worldbioenergy.org/
  270. Wu JP, Brown IWM, Bowden ME, Kemmitt T (2010) Palladium coated porous anodic alumina membranes for gas reforming processes. Solid State Sci 12:1912–1916.  https://doi.org/10.1016/J.SOLIDSTATESCIENCES.2010.06.024 CrossRefGoogle Scholar
  271. Wu C, Wang Z, Wang L, Huang J, Williams PT (2014) Catalytic steam gasification of biomass for a sustainable hydrogen future: Influence of catalyst composition. Waste Biomass Valoriz 5:175–180.  https://doi.org/10.1007/s12649-013-9244-9 CrossRefGoogle Scholar
  272. Xu P, Jin Y, Cheng Y (2017) Thermodynamic analysis of the gasification of municipal solid waste-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Engineering 3:416–422.  https://doi.org/10.1016/J.ENG.2017.03.004 CrossRefGoogle Scholar
  273. Yang F, Yang G, Feng Y, Xiao B, He M, Liu S, Li J, Luo S, Guo X, Hu Z (2008) Hydrogen-rich gas from catalytic steam gasification of municipal solid waste (MSW): influence of catalyst and temperature on yield and product composition. Int J Hydrog Energy 34:195–203.  https://doi.org/10.1016/j.ijhydene.2008.09.070 CrossRefGoogle Scholar
  274. Yin H, Yip ACK (2017) A review on the production and purification of biomass-derived hydrogen using emerging membrane technologies. Catalysts 7.  https://doi.org/10.3390/catal7100297 CrossRefGoogle Scholar
  275. Yue X-L, Gao Q-X (2018) Contributions of natural systems and human activity to greenhouse gas emissions. Adv Clim Chang Res 9:243–252.  https://doi.org/10.1016/J.ACCRE.2018.12.003 CrossRefGoogle Scholar
  276. Yun S, Ted Oyama S (2011) Correlations in palladium membranes for hydrogen separation: a review. J Membr Sci 375:28–45.  https://doi.org/10.1016/j.memsci.2011.03.057 CrossRefGoogle Scholar
  277. Yun S, Ted Oyama S, Oyama ST (2011a) Correlations in palladium membranes for hydrogen separation: a review. J Membr Sci 375:28–45.  https://doi.org/10.1016/j.memsci.2011.03.057 CrossRefGoogle Scholar
  278. Yun S, Ko JH, Oyama ST (2011b) Ultrathin palladium membranes prepared by a novel electric field assisted activation. J Membr Sci 369:482–489.  https://doi.org/10.1016/j.memsci.2010.12.015 CrossRefGoogle Scholar
  279. Zeng G, Goldbach A, Xu H (2009) Defect sealing in Pd membranes via point plating. J Membr Sci 328:6–10.  https://doi.org/10.1016/j.memsci.2008.11.053 CrossRefGoogle Scholar
  280. Zeng G, Goldbach A, Shi L, Xu H (2012) On alloying and low-temperature stability of thin, supported PdAg membranes. Int J Hydrog Energy 37:6012–6019.  https://doi.org/10.1016/j.ijhydene.2011.12.126 CrossRefGoogle Scholar
  281. Zhang B (2016) Chapter 1 – History–from the discovery of electroless plating to the present BT. In: Amorphous and nano alloys electroless depositions. Elsevier, Oxford, pp 3–48.  https://doi.org/10.1016/B978-0-12-802685-4.00001-7 CrossRefGoogle Scholar
  282. Zhao L, Goldbach A, Bao C, Xu H (2015) Sulfur inhibition of PdCu membranes in the presence of external mass flow resistance. J Membr Sci 496:301–309.  https://doi.org/10.1016/j.memsci.2015.08.046 CrossRefGoogle Scholar
  283. Zhao L, Goldbach A, Xu H (2016) Tailoring palladium alloy membranes for hydrogen separation from sulfur contaminated gas streams. J Membr Sci 507:55–62.  https://doi.org/10.1016/J.MEMSCI.2016.01.055 CrossRefGoogle Scholar
  284. Zhao S, Liao J, Li D, Wang X, Li N (2018a) Blending of compatible polymer of intrinsic microporosity (PIM-1) with Tröger’s Base polymer for gas separation membranes. J Membr Sci 566:77–86.  https://doi.org/10.1016/J.MEMSCI.2018.08.010 CrossRefGoogle Scholar
  285. Zhao C, Xu H, Goldbach A (2018b) Duplex Pd/ceramic/Pd composite membrane for sweep gas-enhanced CO2 capture. J Membr Sci 563:388–397.  https://doi.org/10.1016/j.memsci.2018.05.057 CrossRefGoogle Scholar
  286. Zornoza B, Casado C, Navajas A (2013) Chapter 11 – Advances in hydrogen separation and purification with membrane technology. In: Gandía LM, Arzamendi G, Diéguez PM (eds) Renew. Hydrog. Technol. Elsevier, Amsterdam, pp 245–268.  https://doi.org/10.1016/B978-0-444-56352-1.00011-8 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.CIEMAT, Combustion and Gasification DivisionMadridSpain
  2. 2.Department of Chemical, Energy and Mechanical TechnologyRey Juan Carlos UniversityMóstolesSpain

Personalised recommendations