Advertisement

Membrane Reactors for Renewable Fuel Production and Their Environmental Benefits

  • Sanaa Hafeez
  • S. M. Al-Salem
  • Achilleas ConstantinouEmail author
Chapter
  • 46 Downloads
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 42)

Abstract

In this communication, we discuss various production methods as potential venues targeted towards alternative fuel generation. These will revolve around the Fischer–Tropsch (FT) process and biodiesel and hydrogen generation techniques. The implementation of membrane reactors in the production of fuels will be shown and discussed; and their advantages will be detailed. The main routes of hydrogen production are also detailed, which include autothermal reforming and biological process. This was done to compare the main advantages of various techniques for the production of hydrogen, as it is noted to be the most desired utility fuel that can serve various purposes. The application of membranes also facilitates an increase in the conversion of desired products while shifting the equilibrium of the reaction and reducing undesired by-products. Membrane reactors also overcome immiscibility issues that hinder conventional reactor processes. Membrane reactors are also demonstrated to reduce the difficulty in separating and purifying impurities, as they couple separation and reaction in one process. This shows drastic economic and energy requirement reductions in the amount of wastewater treatment associated with conventional fuel production reactor. Emphasis is also paid to catalytic membranes used for the production of biodiesel, which can also remove glycerol from the product line as an added advantage.

Keywords

Countercurrent membrane Fischer–Tropsch Hydrogen Pyrolysis Transesterification 

Abbreviations

CH4

Methane

CO

Carbon monoxide

CO2

Carbon dioxide

FAME

Fatty acid methyl esters

FT

Fischer–Tropsch

GHGs

Greenhouse gases

HC

Hydrocarbon

ML-CMR

Monolith loop catalytic membrane reactor

Ni

Nickel (-based catalyst)

O2

Oxygen

PSA

Pressure swing absorption

PVA

Poly(vinyl alcohol)

Rh

Rhodium (-based catalyst)

SMR

Steam methane reforming

SO2

Sulfur dioxide

SPVA

Sulfonated poly(vinyl alcohol)

TCT

Thermochemical treatment

References

  1. Abbaszaadeh A, Ghobadian B, Omidkhah MR, Najafi G (2012) Current biodiesel production technologies: a comparative review. Energy Convers Manag 63:138–148CrossRefGoogle Scholar
  2. Aca-Aca G, Loría-Bastarrachea MI, Ruiz-Treviño FA, Aguilar-Vega M (2018) Transesterification of soybean oil by PAAc catalytic membrane: sorption properties and reactive performance for biodiesel production. Renew Energy 116:250–257CrossRefGoogle Scholar
  3. Aransiola E, Ojumu T, Oyekola O, Madzimbamuto T, Ikhu-Omoregbe D (2014) A review of current technology for biodiesel production: state of the art. Biomass Bioenergy 61:276–297CrossRefGoogle Scholar
  4. Atadashi I, Aroua M, Aziz AA (2011) Biodiesel separation and purification: a review. Renew Energy 36(2):437–443CrossRefGoogle Scholar
  5. Balthasar W (1984) Hydrogen production and technology: today, tomorrow and beyond. Int J Hydrog Energy 9(8):649–668CrossRefGoogle Scholar
  6. Baroutian S, Aroua MK, Raman AAA, Sulaiman NMN (2010) Methanol recovery during transesterification of palm oil in a TiO2/Al2O3 membrane reactor: experimental study and neural network modeling. Sep Purif Technol 76(1):58–63CrossRefGoogle Scholar
  7. Baroutian S, Aroua MK, Raman AAA, Sulaiman NM (2011) A packed bed membrane reactor for production of biodiesel using activated carbon supported catalyst. Bioresour Technol 102(2):1095–1102CrossRefGoogle Scholar
  8. Barreto RA (2018) Fossil fuels, alternative energy and economic growth. Econ Model 75:196–220CrossRefGoogle Scholar
  9. Basile A, Parmaliana A, Tosti S, Iulianelli A, Gallucci F, Espro C, Spooren J (2008) Hydrogen production by methanol steam reforming carried out in membrane reactor on Cu/Zn/Mg-based catalyst. Catal Today 137(1):17–22CrossRefGoogle Scholar
  10. Bing W, Wei M (2019) Recent advances for solid basic catalysts: structure design and catalytic performance. J Solid State Chem 269:184–194CrossRefGoogle Scholar
  11. Bradford MC, Te M, Pollack A (2005) Monolith loop catalytic membrane reactor for Fischer–Tropsch synthesis. Appl Catal A Gen 283(1–2):39–46CrossRefGoogle Scholar
  12. Buonomenna M, Choi S, Drioli E (2010) Catalysis in polymeric membrane reactors: the membrane role. Asia Pac J Chem Eng 5(1):26–34CrossRefGoogle Scholar
  13. Buxbaum RE (2002) U.S. patent no. 6,461,408. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  14. Cannilla C, Bonura G, Costa F, Frusteri F (2018) Biofuels production by esterification of oleic acid with ethanol using a membrane assisted reactor in vapour permeation configuration. Appl Catal A Gen 566:121–129CrossRefGoogle Scholar
  15. Cao P, Tremblay AY, Dubé MA, Morse K (2007) Effect of membrane pore size on the performance of a membrane reactor for biodiesel production. Ind Eng Chem Res 46(1):52–58CrossRefGoogle Scholar
  16. Cao P, Dubé MA, Tremblay AY (2008a) High-purity fatty acid methyl ester production from canola, soybean, palm, and yellow grease lipids by means of a membrane reactor. Biomass Bioenergy 32(11):1028–1036CrossRefGoogle Scholar
  17. Cao P, Dubé MA, Tremblay AY (2008b) Methanol recycling in the production of biodiesel in a membrane reactor. Fuel 87(6):825–833CrossRefGoogle Scholar
  18. Cerveró JM, Coca J, Luque S (2008) Production of biodiesel from vegetable oils. Grasas Aceites 59(1):76–83Google Scholar
  19. Chen H, Peng B, Wang D, Wang J (2007) Biodiesel production by the transesterification of cottonseed oil by solid acid catalysts. Front Chem Eng China 1(1):11–15CrossRefGoogle Scholar
  20. Chen HL, Lee HM, Chen SH, Chao Y, Chang MB (2008) Review of plasma catalysis on hydrocarbon reforming for hydrogen production—interaction, integration, and prospects. Appl Catal B Environ 85(1–2):1–9Google Scholar
  21. Constantinou A, Ghiotto F, Lam KF, Gavriilidis A (2014) Stripping of acetone from water with microfabricated and membrane gas–liquid contactors. Analyst 139(1):266–272CrossRefGoogle Scholar
  22. Dalai A, Kulkarni M, Meher L (2006) Biodiesel productions from vegetable oils using heterogeneous catalysts and their applications as lubricity additives. In: EIC climate change technology, 2006 IEEE. IEEE, pp 1–8.  https://doi.org/10.1109/EICCCC.2006.277228
  23. Das D, Veziroǧlu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy 26(1):13–28CrossRefGoogle Scholar
  24. Demirbaş A (2002) Hydrogen production from biomass by the gasification process. Energy Sources 24(1):59–68CrossRefGoogle Scholar
  25. DeRoussel P, Khakhar D, Ottino J (2001) Mixing of viscous immiscible liquids. Part 2: overemulsification—interpretation and use. Chem Eng Sci 56(19):5531–5537CrossRefGoogle Scholar
  26. Di Serio M, Ledda M, Cozzolino M, Minutillo G, Tesser R, Santacesaria E (2006) Transesterification of soybean oil to biodiesel by using heterogeneous basic catalysts. Ind Eng Chem Res 45(9):3009–3014CrossRefGoogle Scholar
  27. Di Serio M, Cozzolino M, Tesser R, Patrono P, Pinzari F, Bonelli B, Santacesaria E (2007) Vanadyl phosphate catalysts in biodiesel production. Appl Catal A Gen 320:1–7CrossRefGoogle Scholar
  28. Dubé M, Tremblay A, Liu J (2007) Biodiesel production using a membrane reactor. Bioresour Technol 98(3):639–647CrossRefGoogle Scholar
  29. Edrisi SA, Abhilash PC (2016) Exploring marginal and degraded lands for biomass and bioenergy production: an Indian scenario. Renew Sust Energ Rev 54:1537–1551CrossRefGoogle Scholar
  30. Enweremadu C, Mbarawa M (2009) Technical aspects of production and analysis of biodiesel from used cooking oil—a review. Renew Sust Energ Rev 13(9):2205–2224CrossRefGoogle Scholar
  31. Ersöz A (2008) Investigation of hydrocarbon reforming processes for micro-cogeneration systems. Int J Hydrog Energy 33(23):7084–7094CrossRefGoogle Scholar
  32. Espinoza R, Du Toit E, Santamaria J, Menendez M, Coronas J, Irusta S (2000) Use of membranes in Fischer-Tropsch reactors. In: Studies in surface science and catalysis, vol 130. Elsevier, pp 389–394.  https://doi.org/10.1016/S0167-2991(00)80988-X Google Scholar
  33. Fremaux S, Beheshti S-M, Ghassemi H, Shahsavan-Markadeh R (2015) An experimental study on hydrogen-rich gas production via steam gasification of biomass in a research-scale fluidized bed. Energy Convers Manag 91:427–432CrossRefGoogle Scholar
  34. Furuta S, Matsuhashi H, Arata K (2004) Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure. Catal Commun 5(12):721–723CrossRefGoogle Scholar
  35. Gallucci F, De Falco M, Tosti S, Marrelli L, Basile A (2008) Co-current and counter-current configurations for ethanol steam reforming in a dense Pd–Ag membrane reactor. Int J Hydrog Energy 33(21):6165–6171CrossRefGoogle Scholar
  36. Gallucci F, Fernandez E, Corengia P, van Sint Annaland M (2013) Recent advances on membranes and membrane reactors for hydrogen production. Chem Eng Sci 92:40–66CrossRefGoogle Scholar
  37. Goff MJ, Bauer NS, Lopes S, Sutterlin WR, Suppes GJ (2004) Acid-catalyzed alcoholysis of soybean oil. J Am Oil Chem Soc 81(4):415–420CrossRefGoogle Scholar
  38. Guan H-M, Chung T-S, Huang Z, Chng ML, Kulprathipanja S (2006) Poly (vinyl alcohol) multilayer mixed matrix membranes for the dehydration of ethanol–water mixture. J Membr Sci 268(2):113–122CrossRefGoogle Scholar
  39. Guerreiro L, Castanheiro J, Fonseca I, Martin-Aranda R, Ramos A, Vital J (2006) Transesterification of soybean oil over sulfonic acid functionalised polymeric membranes. Catal Today 118(1–2):166–171CrossRefGoogle Scholar
  40. Guerreiro L, Pereira P, Fonseca I, Martin-Aranda R, Ramos A, Dias J, Oliveira R, Vital J (2010) PVA embedded hydrotalcite membranes as basic catalysts for biodiesel synthesis by soybean oil methanolysis. Catal Today 156(3–4):191–197CrossRefGoogle Scholar
  41. Guettel R, Kunz U, Turek T (2008) Reactors for Fischer-Tropsch synthesis. Chem Eng Technol: Ind Chem-Plant Equip-Process Eng-Biotechnol 31(5):746–754CrossRefGoogle Scholar
  42. Gutiérrez-Antonio C, Ornelas MLS, Gómez-Castro FI, Hernández S (2018) Intensification of the hydrotreating process to produce renewable aviation fuel through reactive distillation. Chem Eng Process – Process Intensif 124:122–130CrossRefGoogle Scholar
  43. Hafeez S, Manos G, Al-Salem SM, Aristodemou E, Constantinou A (2018) Liquid fuel synthesis in microreactors. React Chem Eng 3(4):414–432.  https://doi.org/10.1039/C8RE00040A CrossRefGoogle Scholar
  44. He J, Yoneyama Y, Xu B, Nishiyama N, Tsubaki N (2005) Designing a capsule catalyst and its application for direct synthesis of middle isoparaffins. Langmuir 21(5):1699–1702CrossRefGoogle Scholar
  45. Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139(4):244–260CrossRefGoogle Scholar
  46. Jalan R, Srivastava V (1999) Studies on pyrolysis of a single biomass cylindrical pellet—kinetic and heat transfer effects. Energy Convers Manag 40(5):467–494CrossRefGoogle Scholar
  47. Jitputti J, Kitiyanan B, Rangsunvigit P, Bunyakiat K, Attanatho L, Jenvanitpanjakul P (2006) Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chem Eng J 116(1):61–66CrossRefGoogle Scholar
  48. Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151(2):362–367CrossRefGoogle Scholar
  49. Keskin A, Gürü M, Altiparmak D, Aydin K (2008) Using of cotton oil soapstock biodiesel–diesel fuel blends as an alternative diesel fuel. Renew Energy 33(4):553–557CrossRefGoogle Scholar
  50. Khassin AA, Sipatrov AG, Chermashetseva GK, Yurieva TM, Parmon VN (2005) Fischer–Tropsch synthesis using plug-through contactor membranes based on permeable composite monoliths. Selectivity control by porous structure parameters and membrane geometry. Top Catal 32(1–2):39–46CrossRefGoogle Scholar
  51. Kiss AA (2009) Novel process for biodiesel by reactive absorption. Sep Purif Technol 69(3):280–287CrossRefGoogle Scholar
  52. Kiss FE, Jovanović M, Bošković GC (2010) Economic and ecological aspects of biodiesel production over homogeneous and heterogeneous catalysts. Fuel Process Technol 91(10):1316–1320CrossRefGoogle Scholar
  53. Kleinert A, Feldhoff A, Schiestel T, Caro J (2006) Novel hollow fibre membrane reactor for the partial oxidation of methane. Catal Today 118(1–2):44–51CrossRefGoogle Scholar
  54. Knothe G, Krahl J, Van Gerpen J (2005) The biodiesel handbook. AOCS Press, Champaign, p 2005CrossRefGoogle Scholar
  55. Kouzu M, Hidaka J-s (2012) Transesterification of vegetable oil into biodiesel catalyzed by CaO: a review. Fuel 93:1–12CrossRefGoogle Scholar
  56. Licht F, Agra C (2007) World biodiesel markets: the outlook to 2010. Agra Informa Ltd, KentGoogle Scholar
  57. Lipnizki F, Field RW, Ten P-K (1999) Pervaporation-based hybrid process: a review of process design, applications and economics. J Membr Sci 153(2):183–210CrossRefGoogle Scholar
  58. Liu X, He H, Wang Y, Zhu S, Piao X (2008) Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel 87(2):216–221CrossRefGoogle Scholar
  59. Lotero E, Goodwin JG, Bruce DA, Suwannakarn K, Liu Y, Lopez DE (2006) The catalysis of biodiesel synthesis. Catalysis 19(1):41–83Google Scholar
  60. Lu G, Da Costa JD, Duke M, Giessler S, Socolow R, Williams R, Kreutz T (2007) Inorganic membranes for hydrogen production and purification: a critical review and perspective. J Colloid Interface Sci 314(2):589–603CrossRefGoogle Scholar
  61. Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70(1):1–15CrossRefGoogle Scholar
  62. Maneerung T, Hidajat K, Kawi S (2016) Triple-layer catalytic hollow fiber membrane reactor for hydrogen production. J Membr Sci 514:1–14CrossRefGoogle Scholar
  63. Marbán G, Valdés-Solís T (2007) Towards the hydrogen economy? Int J Hydrog Energy 32(12):1625–1637CrossRefGoogle Scholar
  64. Marcano JGS, Tsotsis TT (2002) Catalytic membranes and membrane reactors. Wiley-VCH Verlag GmbH.  https://doi.org/10.1002/3527601988
  65. Meher LC, Kulkarni MG, Dalai AK, Naik SN (2006) Transesterification of karanja (Pongamia pinnata) oil by solid basic catalysts. Eur J Lipid Sci Technol 108(5):389–397CrossRefGoogle Scholar
  66. Mejdell A, Jøndahl M, Peters T, Bredesen R, Venvik H (2009a) Effects of CO and CO2 on hydrogen permeation through a∼ 3 μm Pd/Ag 23 wt.% membrane employed in a microchannel membrane configuration. Sep Purif Technol 68(2):178–184CrossRefGoogle Scholar
  67. Mejdell A, Jøndahl M, Peters T, Bredesen R, Venvik H (2009b) Experimental investigation of a microchannel membrane configuration with a 1.4 μm Pd/Ag23 wt.% membrane—effects of flow and pressure. J Membr Sci 327(1–2):6–10CrossRefGoogle Scholar
  68. Mejdell A, Peters T, Stange M, Venvik H, Bredesen R (2009c) Performance and application of thin Pd-alloy hydrogen separation membranes in different configurations. J Taiwan Inst Chem Eng 40(3):253–259CrossRefGoogle Scholar
  69. Mueller U, Schubert M, Yaghi O, Ertl G, Knözinger H, Schüth F, Weitkamp J (2008) Handbook of heterogeneous catalysis, vol 1. Wiley-VCH, Weinheim, pp 247–262Google Scholar
  70. Muradov N (1993) How to produce hydrogen from fossil fuels without CO2 emission. Int J Hydrog Energy 18(3):211–215CrossRefGoogle Scholar
  71. Ni M, Leung DY, Leung MK, Sumathy K (2006) An overview of hydrogen production from biomass. Fuel Process Technol 87(5):461–472CrossRefGoogle Scholar
  72. Nikolaidis P, Poullikkas A (2017) A comparative overview of hydrogen production processes. Renew Sust Energ Rev 67:597–611CrossRefGoogle Scholar
  73. Pal P, Kumar R, Ghosh AK (2018) Analysis of process intensification and performance assessment for fermentative continuous production of bioethanol in a multi-staged membrane-integrated bioreactor system. Energy Convers Manag 171:371–383CrossRefGoogle Scholar
  74. Patil PD, Deng S (2009) Optimization of biodiesel production from edible and non-edible vegetable oils. Fuel 88(7):1302–1306CrossRefGoogle Scholar
  75. Rahimpour M (2015) Membrane reactors for biodiesel production and processing. In: Membrane reactors for energy applications and basic chemical production. Elsevier, pp 289–312.  https://doi.org/10.1016/C2013-0-16489-6
  76. Rahimpour M, Bayat M (2011) Production of ultrapure hydrogen via utilizing fluidization concept from coupling of methanol and benzene synthesis in a hydrogen-permselective membrane reactor. Int J Hydrog Energy 36(11):6616–6627CrossRefGoogle Scholar
  77. Ramadhas A, Jayaraj S, Muraleedharan C (2004) Use of vegetable oils as IC engine fuels—a review. Renew Energy 29(5):727–742CrossRefGoogle Scholar
  78. Rohde MP, Unruh D, Schaub G (2005a) Membrane application in Fischer− Tropsch synthesis to enhance CO2 hydrogenation. Ind Eng Chem Res 44(25):9653–9658CrossRefGoogle Scholar
  79. Rohde MP, Unruh D, Schaub G (2005b) Membrane application in Fischer–Tropsch synthesis reactors—overview of concepts. Catal Today 106(1–4):143–148CrossRefGoogle Scholar
  80. Rostrup-Nielsen J (2003) Encyclopedia of catalysis, vol 6. Wiley, New YorkGoogle Scholar
  81. Saleh J, Tremblay AY, Dubé MA (2010) Glycerol removal from biodiesel using membrane separation technology. Fuel 89(9):2260–2266CrossRefGoogle Scholar
  82. Sarkar B, Sridhar S, Saravanan K, Kale V (2010) Preparation of fatty acid methyl ester through temperature gradient driven pervaporation process. Chem Eng J 162(2):609–615CrossRefGoogle Scholar
  83. Shao P, Huang R (2007) Polymeric membrane pervaporation. J Membr Sci 287(2):162–179CrossRefGoogle Scholar
  84. Sharma Y, Singh B, Upadhyay S (2009) Response to the comments on “Advancements in development and characterization of biodiesel: A review”. Sharma YC, Singh B, Upadhyay SN. Fuel 2008; 87: 2355–73 by Clifford Jones. Fuel 4(88):768–769CrossRefGoogle Scholar
  85. Shi W, He B, Ding J, Li J, Yan F, Liang X (2010) Preparation and characterization of the organic–inorganic hybrid membrane for biodiesel production. Bioresour Technol 101(5):1501–1505CrossRefGoogle Scholar
  86. Shuit SH, Ong YT, Lee KT, Subhash B, Tan SH (2012) Membrane technology as a promising alternative in biodiesel production: a review. Biotechnol Adv 30(6):1364–1380CrossRefGoogle Scholar
  87. Singh AK, Fernando SD (2007) Reaction kinetics of soybean oil transesterification using heterogeneous metal oxide catalysts. Chem Eng Technol: Ind Chem-Plant Equip-Process Engi-Biotechnol 30(12):1716–1720CrossRefGoogle Scholar
  88. Spallina V, Matturro G, Ruocco C, Meloni E, Palma V, Fernandez E, Melendez J, Tanaka AP, Sole JV, van Sint AM (2018) Direct route from ethanol to pure hydrogen through autothermal reforming in a membrane reactor: experimental demonstration, reactor modelling and design. Energy 143:666–681CrossRefGoogle Scholar
  89. Stankiewicz A (2003) Reactive separations for process intensification: an industrial perspective. Chem Eng Process Process Intensif 42(3):137–144CrossRefGoogle Scholar
  90. Steinberg M, Cheng HC (1989) Modern and prospective technologies for hydrogen production from fossil fuels. Int J Hydrog Energy 14(11):797–820CrossRefGoogle Scholar
  91. Tian Y, Demirel SE, Hasan MMF, Pistikopoulos EN (2018) An overview of process systems engineering approaches for process intensification: state of the art. Chem Eng Process Process Intensif 133:160–210CrossRefGoogle Scholar
  92. Tosti S, Basile A, Bettinali L, Borgognoni F, Gallucci F, Rizzello C (2008) Design and process study of Pd membrane reactors. Int J Hydrog Energy 33(19):5098–5105CrossRefGoogle Scholar
  93. Van Der Laan GP, Beenackers A (1999) Kinetics and selectivity of the Fischer–Tropsch synthesis: a literature review. Catal Rev 41(3–4):255–318CrossRefGoogle Scholar
  94. Wang L, Yang J (2007) Transesterification of soybean oil with nano-MgO or not in supercritical and subcritical methanol. Fuel 86(3):328–333CrossRefGoogle Scholar
  95. Wang Y, Wang X, Liu Y, Ou S, Tan Y, Tang S (2009) Refining of biodiesel by ceramic membrane separation. Fuel Process Technol 90(3):422–427CrossRefGoogle Scholar
  96. Wen M, Mori K, Kuwahara Y, An T, Yamashita H (2018) Design and architecture of metal organic frameworks for visible light enhanced hydrogen production. Appl Catal B Environ 218:555–569CrossRefGoogle Scholar
  97. Wilhelm D, Simbeck D, Karp A, Dickenson R (2001) Syngas production for gas-to-liquids applications: technologies, issues and outlook. Fuel Process Technol 71(1–3):139–148CrossRefGoogle Scholar
  98. Yusuf N, Kamarudin SK, Yaakub Z (2011) Overview on the current trends in biodiesel production. Energy Convers Manag 52(7):2741–2751CrossRefGoogle Scholar
  99. Zhang G, Jin W, Xu N (2018) Design and fabrication of ceramic catalytic Membrane Reactors for green chemical engineering applications. Engineering 4(6):848–860CrossRefGoogle Scholar
  100. Zhu W, Gora L, Van den Berg A, Kapteijn F, Jansen J, Moulijn J (2005) Water vapour separation from permanent gases by a zeolite-4A membrane. J Membr Sci 253(1–2):57–66CrossRefGoogle Scholar
  101. Zhu M, He B, Shi W, Feng Y, Ding J, Li J, Zeng F (2010) Preparation and characterization of PSSA/PVA catalytic membrane for biodiesel production. Fuel 89(9):2299–2304CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sanaa Hafeez
    • 1
  • S. M. Al-Salem
    • 2
  • Achilleas Constantinou
    • 1
    • 3
    Email author
  1. 1.Division of Chemical & Petroleum Engineering, School of EngineeringLondon South Bank UniversityLondonUK
  2. 2.Environment & Life Sciences Research CentreKuwait Institute for Scientific ResearchSafatKuwait
  3. 3.Department of Chemical EngineeringUniversity College LondonLondonUK

Personalised recommendations