Advertisement

Scilab Based Toolbox for Fractional-order Systems and PID Controllers

  • Kishore BingiEmail author
  • Rosdiazli Ibrahim
  • Mohd Noh Karsiti
  • Sabo Miya Hassan
  • Vivekananda Rajah Harindran
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 264)

Abstract

In this chapter, a toolbox for fractional-order systems and PI/PID controllers using Scilab will be developed. According to our knowledge, the proposed toolbox is the first Scilab based toolbox for fractional-order systems and controllers. The toolbox will be developed in three stages. Initially, the definitions of fractional-order operators, approximation algorithms and fractional-order differentiator and integrator will be implemented. Using these definitions in the second stage, fractional-order systems, controllers, and filters will be developed. The final stage includes the time and frequency domain analysis as well as numerical and stability analysis of the systems.

References

  1. 1.
    Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Matušu, R.: Application of fractional order calculus to control theory. Int. J. Math. Models Methods Appl. Sci. 5(7), 1162–1169 (2011)Google Scholar
  3. 3.
    Caponetto, R.: Fractional Order Systems: Modeling and Control Applications. World Scientific (2010)Google Scholar
  4. 4.
    Petráš, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer Science & Business Media (2011)Google Scholar
  5. 5.
    Shah, P., Agashe, S.: Review of fractional PID controller. Mechatronics 38, 29–41 (2016)CrossRefGoogle Scholar
  6. 6.
    Xue, D., Chen, Y., Atherton, D.P.: Linear Feedback Control: Analysis and Design with MATLAB. Siam (2007)Google Scholar
  7. 7.
    Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu-Batlle, V.: Fractional-Order Systems and Controls: Fundamentals and Applications. Springer Science & Business Media (2010)Google Scholar
  8. 8.
    Tavazoei, M.S.: Time response analysis of fractional-order control systems: a survey on recent results. Fract. Calc. Appl. Anal. 17(2), 440–461 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bingi, K., Ibrahim, R., Karsiti, M.N., Hassan, S.M., Harindran, V.R.: Real-time control of pressure plant using 2DOF fractional-order PID controller. Arab. J. Sci. Eng. 44(3), 2091–2102 (2019)CrossRefGoogle Scholar
  10. 10.
    Bingi, K., Ibrahim, R., Karsiti, M.N., Hassan, S.M.: Fractional order set-point weighted PID controller for pH neutralization process using accelerated PSO algorithm. Arab. J. Sci. Eng. 43(6), 2687–2701 (2018)CrossRefGoogle Scholar
  11. 11.
    Oustaloup, A., Melchior, P., Lanusse, P., Cois, O., Dancla, F.: The CRONE toolbox for Matlab. In: CACSD. Conference Proceedings. IEEE International Symposium on Computer-Aided Control System Design, Anchorage, USA, 25–27 Sept 2000Google Scholar
  12. 12.
    Malti, R., Melchior, P., Lanusse, P., Oustaloup, A.: Object-oriented CRONE toolbox for fractional differential signal processing. Signal Image Video Process. 6(3), 393–400 (2012)CrossRefGoogle Scholar
  13. 13.
    Malti, R., Victor, S.: Crone toolbox for system identification using fractional differentiation models. IFAC-PapersOnLine 48(28), 769–774 (2015)CrossRefGoogle Scholar
  14. 14.
    Malti, R., Melchior, P., Lanusse, P., Oustaloup, A.: Towards an object oriented CRONE toolbox for fractional differential systems. IFAC Proc. Vol. 44(1), 10830–10835 (2011)CrossRefGoogle Scholar
  15. 15.
    Valerio, D., Da Costa, J.S.: Ninteger: a non-integer control toolbox for MatLab. Proceedings of Fractional Differentiation and Its Applications, Bordeaux (2004)Google Scholar
  16. 16.
    de Oliveira Valério, D.P.M.: Ninteger v. 2.3 Fractional Control Toolbox for MATLAB. Lisboa, Universidade Technical (2005)Google Scholar
  17. 17.
    Tepljakov, A., Petlenkov, E., Belikov, J.: FOMCON: fractional-order modeling and control toolbox for MATLAB. In: Proceedings of the 18th International Conference Mixed Design of Integrated Circuits and Systems-MIXDES 2011, Gliwice, Poland, 16–18 June 2011Google Scholar
  18. 18.
    Tepljakov, A.: Fractional-Order Modeling and Control of Dynamic Systems. Springer (2017)Google Scholar
  19. 19.
    Tepljakov, A., Petlenkov, E., Belikov, J., Finajev, J.: Fractional-order controller design and digital implementation using FOMCON toolbox for MATLAB. In: 2013 IEEE Conference on Computer Aided Control System Design (CACSD), Hyderabad, India, 28–30 Aug 2013Google Scholar
  20. 20.
    Lachhab, N., Svaricek, F., Wobbe, F., Rabba, H.: Fractional order PID controller (FOPID)-toolbox. In: 2013 European Control Conference (ECC), Zurich, Switzerland, 17–19 July 2013Google Scholar
  21. 21.
    Chen, Y., Petras, I., Xue, D.: Fractional order control-a tutorial. In: 2009 American Control Conference, St. Louis, MO, USA, 10–12 June 2009Google Scholar
  22. 22.
    Dzieliński, A., Sierociuk, D.: Simulation and experimental tools for fractional order control education. IFAC Proc. Vol. 41(2), 11654–11659 (2008)CrossRefGoogle Scholar
  23. 23.
    Sierociuk, D.: Fractional order discrete state-space system simulink toolkit user guide. http://www.ee.pw.edu.pl/~dsieroci/fsst/fsst.htm (2005)
  24. 24.
    Pisoni, E., Visioli, A., Dormido, S.: An interactive tool for fractional order PID controllers. In: 2009 35th Annual Conference of IEEE Industrial Electronics, Porto, Portugal, 3–5 Nov 2009Google Scholar
  25. 25.
    Dormido, S., Pisoni, E., Visioli, A.: An interactive tool for loop-shaping design of fractional-order PID controllers. In: Proceedings of the 4th IFAC Workshop on Fractional Differentiation and Its Applications, Badajoz, Spain, 18–20 Oct 2010Google Scholar
  26. 26.
    Dormido, S., Pisoni, E., Visioli, A.: Interactive tools for designing fractional-order PID controllers. Int. J. Innov. Comp. Inf. Control 8(7), 4579–4590 (2012)Google Scholar
  27. 27.
    Petráš, I.: Fractional derivatives, fractional integrals, and fractional differential equations in Matlab. In: Assi , A. (ed.) Engineering Education and Research Using MATLAB, pp. 239–264, IntechOpen (2011)Google Scholar
  28. 28.
    Marinov, T.M., Ramirez, N., Santamaria, F.: Fractional integration toolbox. Fract. Calc. Appl. Anal. 16(3), 670–681 (2013)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Lanusse, P., Malti, R., Melchior, P.: Crone control system design toolbox for the control engineering community: tutorial and case study. Phil. Trans. R. Soc. A 371(1990), 20120149 (2013)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Yousfi, N., Melchior, P., Rekik, C., Derbel, N., Oustaloup, A.: Design of centralized CRONE controller combined with MIMO-QFT approach applied to non-square multivariable systems. Int. J. Comput. Appl. 45(16) (2012)Google Scholar
  31. 31.
    Tepljakov, A.: Fractional-Order Calculus Based Identification and Control of Linear Dynamic Systems. Tallinn University of Technology (2011)Google Scholar
  32. 32.
    Sohal, J.S.: Improvement of artificial neural network based character recognition system, using SciLab. Optik 127(22), 10510–10518 (2016)CrossRefGoogle Scholar
  33. 33.
    Campbell, S.L., Chancelier, J.P., Nikoukhah, R.: Modeling and Simulation in SCILAB. Springer, New York (2006)zbMATHGoogle Scholar
  34. 34.
    Bunks, C., Chancelier, J.P., Delebecque, F., Goursat, M., Nikoukhah, R., Steer, S.: Engineering and Scientific Computing with Scilab. Springer Science & Business Media (2012)Google Scholar
  35. 35.
    Wouwer, A.V., Saucez, P., Vilas, C.: Simulation of ode/pde Models With Matlab, Octave and Scilab. Springer, Cham (2014)zbMATHGoogle Scholar
  36. 36.
    Rohit, M.T., Ashish, M.K.: Digital Image Processing Using SCILAB. Springer, Cham (2018)Google Scholar
  37. 37.
    Ma, L., Xia, F., Peng, Z.: Integrated design and implementation of embedded control systems with scilab. Sensors 8(9), 5501–5515 (2008)CrossRefGoogle Scholar
  38. 38.
    Pendharkar, I.: Rltool for Scilab: a public domain tool for SISO system design. IEEE Control Syst. Mag. 25(1), 23–25 (2005)CrossRefGoogle Scholar
  39. 39.
    Magyar, Z., Žáková, K.: Scilab based remote control of experiments. IFAC Proc. Vol. 45(11), 206–211 (2012)CrossRefGoogle Scholar
  40. 40.
    Landau, I.D., Zito, G.: Digital Control Systems: Design, Identification and Implementation. Springer Science & Business Media (2007)Google Scholar
  41. 41.
    Bingi, K., Ibrahim, R., Karsiti, M.N., Hassan, S.M.: Fractional-order filter design for set-point weighted PID controlled unstable systems. Int. J. Mech. Mechatron. Eng. 17(5), 173–179 (2017)Google Scholar
  42. 42.
    Bingi, K., Ibrahim, R., Karsiti, M.N., Hassan, S.M., Harindran, V.R.: Fractional order PI controllers for real-time control of pressure plant. In: 2018 5th International Conference on Control, Decision and Information Technologies, Thessaloniki, Greece, 10–13 Apr 2018Google Scholar
  43. 43.
    Luo, Y., Chen, Y.: Fractional order [proportional derivative] controller for a class of fractional order systems. Automatica 45(10), 2446–2450 (2009)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Tavakoli-Kakhki, M., Haeri, M.: Fractional order model reduction approach based on retention of the dominant dynamics: application in IMC based tuning of FOPI and FOPID controllers. ISA Trans. 50(3), 432–442 (2011)CrossRefGoogle Scholar
  45. 45.
    Feliu-Batlle, V., Perez, R.R., Rodriguez, L.S.: Fractional robust control of main irrigation canals with variable dynamic parameters. Control Eng. Pract. 15(6), 673–686 (2007)CrossRefGoogle Scholar
  46. 46.
    Feliu-Batlle, V., Rivas-Perez, R., Castillo-Garcia, F.J.: Fractional order controller robust to time delay variations for water distribution in an irrigation main canal pool. Comput. Electron. Agric. 69(2), 185–197 (2009)CrossRefGoogle Scholar
  47. 47.
    El-Khazali, R.: Fractional-order PI\(^{\lambda } \)D\(^{\mu } \) controller design. Comput. Math. Appl. 66(5), 639–646 (2013)Google Scholar
  48. 48.
    Latha, K., Rajinikanth, V., Surekha, P.M.: PSO-based PID controller design for a class of stable and unstable systems. ISRN Artif. Intell. 2013 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Kishore Bingi
    • 1
    Email author
  • Rosdiazli Ibrahim
    • 2
  • Mohd Noh Karsiti
    • 2
  • Sabo Miya Hassan
    • 3
  • Vivekananda Rajah Harindran
    • 4
  1. 1.Institute of Autonomous SystemsUniversiti Teknologi PETRONASPerakMalaysia
  2. 2.Department of Electrical and Electronic EngineeringUniversiti Teknologi PETRONASPerakMalaysia
  3. 3.Department of Electrical and Electronics EngineeringAbubakar Tafawa Balewa UniversityBauchiNigeria
  4. 4.Instrumentation and ControlPETRONAS Group Technical SolutionsPetaling JayaMalaysia

Personalised recommendations