Advertisement

Fractional-order Set-Point Weighted Controllers

  • Kishore BingiEmail author
  • Rosdiazli Ibrahim
  • Mohd Noh Karsiti
  • Sabo Miya Hassan
  • Vivekananda Rajah Harindran
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 264)

Abstract

In the first section of this chapter, a critical review of the PID controller and modified PID control strategies include set-point weighted PID, PI-PD, and fractional-order PID is presented. In the second section, the design of fractional-order set-point weighted PID (SWPI\(^\lambda \)D\(^\mu \)) controller will be discussed. Here, the control strategy will be developed for standard, industrial, parallel and ideal configurations of the controller. In the third section, the design of fractional-order PI-PD  (PI\(^\lambda \)-PD\(^\mu \)) controller in two single-loop control configurations are presented. In both cases, the conversion of controller parameters between various control strategies is presented. The next succeeding sections of the chapter will present the case studies on real-time pH neutralization and pressure processes for the implementation and evaluation of designed fractional-order set-point weighted PID control strategies. Finally, the last section will summarize the chapter.

References

  1. 1.
    Wang, Q.G., Ye, Z., Cai, W.J., Hang, C.C.: PID Control for Multivariable Processes. Springer (2008)Google Scholar
  2. 2.
    Grimholt, C., Skogestad, S.: Optimal PI and PID control of first-order plus delay processes and evaluation of the original and improved SIMC rules. J. Process Control 70, 36–46 (2018)CrossRefGoogle Scholar
  3. 3.
    Haugen, F.: Comparing PI tuning methods in a real benchmark temperature control system. Model. Identif. Control 31(3), 79–91 (2010)CrossRefGoogle Scholar
  4. 4.
    Pachauri, N., Rani, A., Singh, V.: Bioreactor temperature control using modified fractional-order IMC-PID for ethanol production. Chem. Eng. Res. Des. 122, 97–112 (2017)CrossRefGoogle Scholar
  5. 5.
    Hermansson, A.W., Syafiie, S.: Model predictive control of pH neutralization processes: a review. Control Eng. Pract. 45, 98–109 (2015)CrossRefGoogle Scholar
  6. 6.
    Samad, T.: A survey on industry impact and challenges thereof [technical activities]. IEEE Control Syst. Mag. 37(1), 17–18 (2017)CrossRefGoogle Scholar
  7. 7.
    Shah, P., Agashe, S.: Review of fractional PID controller. Mechatronics 38, 29–41 (2016)CrossRefGoogle Scholar
  8. 8.
    Alfaro, V.M., Vilanova, R.: Conversion formulae and performance capabilities of two-degree-of-freedom PID control algorithms. In: Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies & Factory Automation, Kraków, Poland, 17–21 Sept 2012Google Scholar
  9. 9.
    Ang, K.H., Chong, G., Li, Y.: PID control system analysis, design, and technology. IEEE Trans. Control Syst. Technol. 13(4), 559–576 (2005)CrossRefGoogle Scholar
  10. 10.
    Alfaro, V.M., Vilanova, R.: Model-Reference Robust Tuning of PID Controllers. Springer (2016)Google Scholar
  11. 11.
    Mudi, R.K., Dey, C.: Performance improvement of PI controllers through dynamic set-point weighting. ISA Trans. 50(2), 220–230 (2011)CrossRefGoogle Scholar
  12. 12.
    Visioli, A.: Practical PID Control. Springer (2006)Google Scholar
  13. 13.
    Alfaro, V.M., Vilanova, R.: Model-reference robust tuning of 2DoF PI controllers for first-and second-order plus dead-time controlled processes. J. Process Control 22(2), 359–374 (2012)CrossRefGoogle Scholar
  14. 14.
    Åström, K.J., Hägglund, T.: Advanced PID Control. ISA-The Instrumentation, Systems, and Automation Society (2006)Google Scholar
  15. 15.
    Azarmi, R., Tavakoli-Kakhki, M., Sedigh, A.K., Fatehi, A.: Analytical design of fractional order PID controllers based on the fractional set-point weighted structure: case study in twin rotor helicopter. Mechatronics 31, 222–233 (2015)CrossRefGoogle Scholar
  16. 16.
    De Oliveira, E.C., Tenreiro Machado, J.A.: A review of definitions for fractional derivatives and integral. Math. Probl. Eng. (2014)Google Scholar
  17. 17.
    Sahu, R.K., Panda, S., Rout, U.K.: DE optimized parallel 2-DOF PID controller for load frequency control of power system with governor dead-band nonlinearity. Int. J. Electr. Power Energy Syst. 49, 19–33 (2013)CrossRefGoogle Scholar
  18. 18.
    Mantz, R.J.: A PI controller with dynamic set-point weighting for nonlinear processes. IFAC Proc. Vol. 45(3), 512–517 (2012)CrossRefGoogle Scholar
  19. 19.
    Ghosh, A., Krishnan, T.R., Tejaswy, P., Mandal, A., Pradhan, J.K., Ranasingh, S.: Design and implementation of a 2-DOF PID compensation for magnetic levitation systems. ISA Trans. 53(4), 1216–1222 (2014)CrossRefGoogle Scholar
  20. 20.
    Jin, Q.B., Liu, Q.: Analytical IMC-PID design in terms of performance/robustness tradeoff for integrating processes: from 2-Dof to 1-Dof. J. Process Control 24(3), 22–32 (2014)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Rajinikanth, V., Latha, K.: Setpoint weighted PID controller tuning for unstable system using heuristic algorithm. Arch. Control Sci. 22(4), 481–505 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Rodriguez-Martinez, A., Garduno-Ramirez, R.: 2 DOF fuzzy gain-scheduling PI for combustion turbogenerator speed control. IFAC Proc. Vol. 45(3), 276–281 (2012)CrossRefGoogle Scholar
  23. 23.
    Pachauri, N., Singh, V., Rani, A.: Two degree of freedom PID based inferential control of continuous bioreactor for ethanol production. ISA Trans. 68, 235–250 (2017)CrossRefGoogle Scholar
  24. 24.
    Bianchi, F.D., Mantz, R.J., Christiansen, C.F.: Multivariable PID control with set-point weighting via BMI optimisation. Automatica 44(2), 472–478 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    Sahu, R.K., Panda, S., Rout, U.K., Sahoo, D.K.: Teaching learning based optimization algorithm for automatic generation control of power system using 2-DOF PID controller. Int. J. Electr. Power Energy Syst. 77, 287–301 (2016)CrossRefGoogle Scholar
  26. 26.
    Vilanova, R., Visioli, A.: PID Control in the Third Millennium. Springer (2012)Google Scholar
  27. 27.
    Papadopoulos, K.G.: PID Controller Tuning Using the Magnitude Optimum Criterion. Springer (2015)Google Scholar
  28. 28.
    Ingimundarson, A., Hägglund, T.: Performance comparison between PID and dead-time compensating controllers. J. Process Control 12(8), 887–895 (2002)CrossRefGoogle Scholar
  29. 29.
    Tan, K.K., Tang, K.Z., Su, Y., Lee, T.H., Hang, C.C.: Deadtime compensation via setpoint variation. J. Process Control 20(7), 848–859 (2010)CrossRefGoogle Scholar
  30. 30.
    Larsson, P., Hägglund, T.: Comparison between robust PID and predictive PI controllers with constrained control signal noise sensitivity. IFAC Proc. Vol. 45(3), 175–180 (2012)CrossRefGoogle Scholar
  31. 31.
    Kaya, I.: Obtaining controller parameters for a new PI-PD Smith predictor using autotuning. J. Process Control 13(5), 465–472 (2003)CrossRefGoogle Scholar
  32. 32.
    Kaya, I.: A PI-PD controller design for control of unstable and integrating processes. ISA Trans. 42(1), 111–121 (2003)CrossRefGoogle Scholar
  33. 33.
    Kaya, I.: PI-PD controllers for controlling stable processes with inverse response and dead time. Electr. Eng. 98(1), 55–65 (2016)CrossRefGoogle Scholar
  34. 34.
    Zou, H., Li, H.: Improved PI-PD control design using predictive functional optimization for temperature model of a fluidized catalytic cracking unit. ISA Trans. 67, 215–221 (2017)CrossRefGoogle Scholar
  35. 35.
    Tsai, K.I., Tsai, C.C.: Design and experimental evaluation of robust PID and PI-PD temperature controllers for oil-cooling machines. In: 9th World Congress on Intelligent Control and Automation, Taipei, Taiwan 21–25 June 2011Google Scholar
  36. 36.
    Padhy, P.K., Majhi, S.: Relay based PI-PD design for stable and unstable FOPDT processes. Comput. Chem. Eng. 30(5), 790–796 (2006)CrossRefGoogle Scholar
  37. 37.
    Padhy, S., Panda, S.: A hybrid stochastic fractal search and pattern search technique based cascade PI-PD controller for automatic generation control of multi-source power systems in presence of plug in electric vehicles. CAAI Trans. Intell. Technol. 2(1), 12–25 (2017)CrossRefGoogle Scholar
  38. 38.
    Padhy, S., Panda, S., Mahapatra, S.: A modified GWO technique based cascade PI-PD controller for AGC of power systems in presence of plug in electric vehicles. Int. J. Eng. Sci. Technol. 20(2), 427–442 (2017)CrossRefGoogle Scholar
  39. 39.
    Nema, S., Kumar Padhy, P.: Identification and cuckoo PI-PD controller design for stable and unstable processes. Trans. Inst. Meas. Control 37(6), 708–720 (2015)CrossRefGoogle Scholar
  40. 40.
    Majhi, M.P.V.S., Mahanta, C.: Fuzzy proportional integral-proportional derivative (PI-PD) controller. In: Proceedings of the 2004 American Control Conference, vol. 5, pp. 4028–4033, IEEE (2004)Google Scholar
  41. 41.
    Silva, G.J., Datta, A., Bhattacharyya, S.P.: PID Controllers for Time-Delay Systems. Springer (2007)Google Scholar
  42. 42.
    Liu, G.P., Daley, S.: Optimal-tuning nonlinear PID control of hydraulic systems. Control Eng. Pract. 8(9), 1045–1053 (2000)CrossRefGoogle Scholar
  43. 43.
    Su, Y.X., Sun, D., Duan, B.Y.: Design of an enhanced nonlinear PID controller. Mechatronics 15(8), 1005–1024 (2005)CrossRefGoogle Scholar
  44. 44.
    Ye, J.: Adaptive control of nonlinear PID-based analog neural networks for a nonholonomic mobile robot. Neurocomputing 71(7–9), 1561–1565 (2008)CrossRefGoogle Scholar
  45. 45.
    Prakash, J., Srinivasan, K.: Design of nonlinear PID controller and nonlinear model predictive controller for a continuous stirred tank reactor. ISA Trans. 48(3), 273–282 (2009)CrossRefGoogle Scholar
  46. 46.
    Xue, D., Chen, Y., Atherton, D.P.: Linear Feedback Control: Analysis and Design with MATLAB. Siam (2007)Google Scholar
  47. 47.
    Adar, N.G., Kozan, R.: Comparison between real time PID and 2-DOF PID controller for 6-DOF robot arm. Acta Phys. Pol. A 130(1), 269–271 (2016)CrossRefGoogle Scholar
  48. 48.
    Alfaro, V.M., Vilanova, R.: Robust tuning of 2DoF five-parameter PID controllers for inverse response controlled processes. J. Process Control 23(4), 453–462 (2013)CrossRefGoogle Scholar
  49. 49.
    Alfaro, V.M., Vilanova, R.: Robust tuning and performance analysis of 2DoF PI controllers for integrating controlled processes. Ind. Eng. Chem. Res. 51(40), 13182–13194 (2012)CrossRefGoogle Scholar
  50. 50.
    Alfaro, V.M., Vilanova, R.: Simple robust tuning of 2DoF PID controllers from a performance/robustness trade-off analysis. Asian J. Control 15(6), 1700–1713 (2013)CrossRefzbMATHGoogle Scholar
  51. 51.
    Vilanova, R., Alfaro, V.M., Arrieta, O.: Simple robust autotuning rules for 2-DoF PI controllers. ISA Trans. 51(1), 30–41 (2012)CrossRefGoogle Scholar
  52. 52.
    Araki, M., Taguchi, H.: Two-degree-of-freedom PID controllers. Int. J. Control Autom. Syst. 1(4), 401–411 (2003)Google Scholar
  53. 53.
    Li, Z., Liu, L., Dehghan, S., Chen, Y., Xue, D.: A review and evaluation of numerical tools for fractional calculus and fractional order controls. Int. J. Control 90(6), 1165–1181 (2017)CrossRefMathSciNetzbMATHGoogle Scholar
  54. 54.
    Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  55. 55.
    Margarita, R., Sergei, V.R., José, A.T.M., Juan, J.T.: Stability of fractional order systems. Math. Probl. Eng. (2013)Google Scholar
  56. 56.
    Krishna, B.T.: Studies on fractional order differentiators and integrators: a survey. Signal Process. 91(3), 386–426 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  57. 57.
    Valério, D., Trujillo, J.J., Rivero, M., Machado, J.T., Baleanu, D.: Fractional calculus: a survey of useful formulas. Eur. Phys. J. Spec. Top. 222(8), 1827–1846 (2013)CrossRefGoogle Scholar
  58. 58.
    Petráš, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer Science & Business Media (2011)Google Scholar
  59. 59.
    Caponetto, R.: Fractional Order Systems: Modeling and Control Applications. World Scientific (2010)Google Scholar
  60. 60.
    Vinagre, B.M., Podlubny, I., Hernandez, A., Feliu, V.: Some approximations of fractional order operators used in control theory and applications. Fract. Calc. Appl. Anal. 3(3), 231–248 (2000)MathSciNetzbMATHGoogle Scholar
  61. 61.
    Petrás, I.: Fractional derivatives, fractional integrals, and fractional differential equations in Matlab. Engineering education and research using MATLAB, IntechOpen (2011)Google Scholar
  62. 62.
    Monje, C.A., Vinagre, B.M., Feliu, V., Chen, Y.: Tuning and auto-tuning of fractional order controllers for industry applications. Control Eng. Pract. 16(7), 798–812 (2008)CrossRefGoogle Scholar
  63. 63.
    Chen, Y., Bhaskaran, T., Xue, D.: Practical tuning rule development for fractional order proportional and integral controllers. J. Comput. Nonlinear Dyn. 3(2), 021403 (2008)CrossRefGoogle Scholar
  64. 64.
    Zamani, M., Karimi-Ghartemani, M., Sadati, N., Parniani, M.: Design of a fractional order PID controller for an AVR using particle swarm optimization. Control Eng. Pract. 17(12), 1380–1387 (2009)CrossRefGoogle Scholar
  65. 65.
    Li, H., Luo, Y., Chen, Y.: A fractional order proportional and derivative (FOPD) motion controller: tuning rule and experiments. IEEE Trans. Control Syst. Technol. 18(2), 516–520 (2009)CrossRefGoogle Scholar
  66. 66.
    Padula, F., Visioli, A.: Tuning rules for optimal PID and fractional-order PID controllers. J. Process Control 21(1), 69–81 (2011)CrossRefzbMATHGoogle Scholar
  67. 67.
    Sharma, R., Rana, K.P.S., Kumar, V.: Performance analysis of fractional order fuzzy PID controllers applied to a robotic manipulator. Expert Syst. Appl. 41(9), 4274–4289 (2014)CrossRefGoogle Scholar
  68. 68.
    Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu-Batlle, V.: Fractional-Order Systems and Controls: Fundamentals and Applications. Springer Science & Business Media (2010)Google Scholar
  69. 69.
    Luo, Y., Chen, Y.: Fractional order [proportional derivative] controller for a class of fractional order systems. Automatica 45(10), 2446–2450 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  70. 70.
    Luo, Y., Chao, H., Di, L., Chen, Y.: Lateral directional fractional order (PI) \(\alpha \) control of a small fixed-wing unmanned aerial vehicles: controller designs and flight tests. IET Control Theory Appl. 5(18), 2156–2167 (2011)CrossRefMathSciNetGoogle Scholar
  71. 71.
    Luo, Y., Chen, Y.: Fractional-order [proportional derivative] controller for robust motion control: tuning procedure and validation. In: American Control Conference, St. Louis, Missouri, USA, 10–12 June 2009Google Scholar
  72. 72.
    Luo, Y., Chen, Y.Q., Wang, C.Y., Pi, Y.G.: Tuning fractional order proportional integral controllers for fractional order systems. J. Process Control 20(7), 823–831 (2010)CrossRefGoogle Scholar
  73. 73.
    Tenoutit, M., Maamri, N., Trigeassou, J.C.: An output feedback approach to the design of robust fractional PI and PID controllers. IFAC Proc. Vol. 44(1), 12568–12574 (2011)CrossRefGoogle Scholar
  74. 74.
    Lachhab, N., Svaricek, F., Wobbe, F., Rabba, H.: Fractional order PID controller (FOPID)-Toolbox. In: European Control Conference. Zurich, Switzerland, 17–19 July 2013Google Scholar
  75. 75.
    Tenoutit, M., Maamri, N., Trigeassou, J.C.: A time moments approach to the design of robust fractional PID controllers. In: 8th International Multi-conference on Systems, Signals & Devices, Sousse-Tunisia, 22–25 March 2011Google Scholar
  76. 76.
    Merrikh-Bayat, F., Mirebrahimi, N.: Introduction to the nonlinear PI\(^{\lambda } \)D\(^{\mu } \) control. In: 2011 IEEE International Conference on Control System, Computing and Engineering, Penang, Malaysia, 25–27 Nov 2011Google Scholar
  77. 77.
    Tavakoli-Kakhki, M., Haeri, M.: Fractional order model reduction approach based on retention of the dominant dynamics: application in IMC based tuning of FOPI and FOPID controllers. ISA Trans. 50(3), 432–442 (2011)CrossRefGoogle Scholar
  78. 78.
    Bettayeb, M., Mansouri, R.: Fractional IMC-PID-filter controllers design for non integer order systems. J. Process Control 24(4), 261–271 (2014)CrossRefGoogle Scholar
  79. 79.
    Feliu-Batlle, V., Perez, R.R., Rodriguez, L.S.: Fractional robust control of main irrigation canals with variable dynamic parameters. Control Eng. Pract. 15(6), 673–686 (2007)CrossRefGoogle Scholar
  80. 80.
    Feliu-Batlle, V., Rivas-Perez, R., Castillo-Garcia, F.J.: Fractional order controller robust to time delay variations for water distribution in an irrigation main canal pool. Comput. Electron. Agric. 69(2), 185–197 (2009)CrossRefGoogle Scholar
  81. 81.
    El-Khazali, R.: Fractional-order PI\(^{\lambda } \)D\(^{\mu } \) controller design. Comput. Math. Appl. 66(5), 639–646 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  82. 82.
    Freeborn, T.J.: A survey of fractional-order circuit models for biology and biomedicine. IEEE J. Emerg. Sel. Top. Circuits 3(3), 416–424 (2013)CrossRefGoogle Scholar
  83. 83.
    Freeborn, T.J., Maundy, B., Elwakil, A.S.: Fractional-order models of supercapacitors, batteries and fuel cells: a survey. Mater. Renew. Sustain. Energy 4(3), 1–9 (2015)CrossRefzbMATHGoogle Scholar
  84. 84.
    Jain, M., Rani, A., Pachauri, N., Singh, V., Mittal, A.P.: Design of fractional order 2-DOF PI controller for real-time control of heat flow experiment. Eng. Sci. Technol. Int. J. 22(1), 215–228 (2019)CrossRefGoogle Scholar
  85. 85.
    Pachauri, N., Singh, V., Rani, A.: Two degrees-of-freedom fractional-order proportional-integral-derivative-based temperature control of fermentation process. J. Dyn. Syst. Meas. Control-Trans. ASME 140(7), 071006 (2018)CrossRefGoogle Scholar
  86. 86.
    Angel, L., Viola, J.: Fractional order PID for tracking control of a parallel robotic manipulator type delta. ISA Trans. 79, 172–188 (2018)CrossRefGoogle Scholar
  87. 87.
    Sharma, R., Gaur, P., Mittal, A.P.: Performance analysis of two-degree of freedom fractional order PID controllers for robotic manipulator with payload. ISA Trans. 58, 279–291 (2015)CrossRefGoogle Scholar
  88. 88.
    Sondhi, S., Hote, Y.V.: Fractional order PID controller for load frequency control. Energy Conv. Manag. 85, 343–353 (2014)CrossRefGoogle Scholar
  89. 89.
    Zamani, A., Barakati, S.M., Yousofi-Darmian, S.: Design of a fractional order PID controller using GBMO algorithm for load-frequency control with governor saturation consideration. ISA Trans. 64, 56–66 (2016)CrossRefGoogle Scholar
  90. 90.
    Lamba, R., Singla, S.K., Sondhi, S.: Fractional order PID controller for power control in perturbed pressurized heavy water reactor. Nucl. Eng. Des. 323, 84–94 (2017)CrossRefGoogle Scholar
  91. 91.
    Kumar, N., Tyagi, B., Kumar, V.: Deregulated multiarea AGC scheme using BBBC-FOPID controller. Arab. J. Sci. Eng. 42(7), 2641–2649 (2017)CrossRefGoogle Scholar
  92. 92.
    Debbarma, S., Saikia, L.C., Sinha, N.: Automatic generation control using two degree of freedom fractional order PID controller. Int. J. Electr. Power Energy Syst. 58, 120–129 (2014)CrossRefGoogle Scholar
  93. 93.
    Tepljakov, A., Gonzalez, E.A., Petlenkov, E., Belikov, J., Monje, C.A., Petráš, I.: Incorporation of fractional-order dynamics into an existing PI/PID DC motor control loop. ISA Trans. 60, 262–273 (2016)CrossRefGoogle Scholar
  94. 94.
    Pan, I., Das, S.: Frequency domain design of fractional order PID controller for AVR system using chaotic multi-objective optimization. Int. J. Electr. Power Energy Syst. 51, 106–118 (2013)CrossRefGoogle Scholar
  95. 95.
    Kumar, G., Arunshankar, J.: Control of nonlinear two-tank hybrid system using sliding mode controller with fractional-order PI-D sliding surface. Comput. Electr. Eng. 71, 953–965 (2018)CrossRefGoogle Scholar
  96. 96.
    Tepljakov, A., Alagoz, B.B., Yeroglu, C., Gonzalez, E., HosseinNia, S.H., Petlenkov, E.: FOPID controllers and their industrial applications: a survey of recent results. IFAC-PapersOnLine 51(4), 25–30 (2018)CrossRefGoogle Scholar
  97. 97.
    Lurie, B.J.: Three-parameter tunable tilt-integral-derivative (TID) controller. US Patent 5,371,670, 6 Dec 1994Google Scholar
  98. 98.
    Abbisso, S., Caponetto, R., Diamante, O., Porto, D., Di Cola, E., Fortuna, L.: Non-integer order dynamic systems. US Patent 6,678,670, 13 Jan 2004Google Scholar
  99. 99.
    Bohannan, G., Hurst, S., Spangler, L.: Electrical component with fractional order impedance. US Patent 11/372,232, 30 Nov 2006Google Scholar
  100. 100.
    Chen, Y.: Tuning methods for fractional-order controllers. US Patent 7,599,752, 6 Oct 2009Google Scholar
  101. 101.
    Almadhoun, M.N., Elshurafa, A., Salama, K., Alshareef, H.: Fractional order capacitor. US Patent 9,305,706, 6 Apr 2016Google Scholar
  102. 102.
    Rana, K.P.S., Kumar, V., Mittra, N., Pramanik, N.: Implementation of fractional order integrator/differentiator on field programmable gate array. Alex. Eng. J. 55(2), 1765–1773 (2016)CrossRefGoogle Scholar
  103. 103.
    Muñiz-Montero, C., García-Jiménez, L.V., Sánchez-Gaspariano, L.A., Sánchez-López, C., González-Díaz, V.R., Tlelo-Cuautle, E.: New alternatives for analog implementation of fractional-order integrators, differentiators and PID controllers based on integer-order integrators. Nonlinear Dyn. 90(1), 241–256 (2017)CrossRefMathSciNetGoogle Scholar
  104. 104.
    Tolba, M.F., AboAlNaga, B.M., Said, L.A., Madian, A.H., Radwan, A.G.: Fractional order integrator/differentiator: FPGA implementation and FOPID controller application. AEU-Int. J. Electron. Commun. 98, 220–229 (2019)CrossRefGoogle Scholar
  105. 105.
    Tepljakov, A.: Fractional-Order Modeling and Control of Dynamic Systems. Springer (2017)Google Scholar
  106. 106.
    Bingi, K., Ibrahim, R., Karsiti, M.N., Hassan, S.M., Harindran, V.R.: A comparative study of 2DOF PID and2DOF fractional order PID controllerson a class of unstable systems. Arch. Control Sci. 28(4), 635–682 (2018)Google Scholar
  107. 107.
    Bingi, K., Ibrahim, R., Karsiti, M.N., Hassan, S.M.: Fractional order set-point weighted PID controller for pH neutralization process using accelerated PSO algorithm. Arab. J. Sci. Eng. 43(6), 2687–2701 (2018)CrossRefGoogle Scholar
  108. 108.
    Bingi, K., Ibrahim, R., Karsiti, M.N., Chung, T.D., Hassan, S.M.: Optimal PID control of pH neutralization plant. In: 2nd IEEE International Symposium on Robotics and Manufacturing Automation. Universiti Teknologi PETRONAS, Malaysia 25–27 Sept 2016Google Scholar
  109. 109.
    Bingi, K., Ibrahim, R., Karsiti, M.N., Hassan, S.M., Harindran, V.R.: Real-time control of pressure plant using 2DOF fractional-order PID controller. Arab. J. Sci. Eng. 44(3), 2091–2102 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Kishore Bingi
    • 1
    Email author
  • Rosdiazli Ibrahim
    • 2
  • Mohd Noh Karsiti
    • 2
  • Sabo Miya Hassan
    • 3
  • Vivekananda Rajah Harindran
    • 4
  1. 1.Institute of Autonomous SystemsUniversiti Teknologi PETRONASPerakMalaysia
  2. 2.Department of Electrical and Electronic EngineeringUniversiti Teknologi PETRONASPerakMalaysia
  3. 3.Department of Electrical and Electronics EngineeringAbubakar Tafawa Balewa UniversityBauchiNigeria
  4. 4.Instrumentation and ControlPETRONAS Group Technical SolutionsPetaling JayaMalaysia

Personalised recommendations