Advertisement

Introduction

  • Kishore BingiEmail author
  • Rosdiazli Ibrahim
  • Mohd Noh Karsiti
  • Sabo Miya Hassan
  • Vivekananda Rajah Harindran
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 264)

Abstract

This chapter presents the background on conventional PID controllers, fractional calculus, fractional-order PID controllers, approximation techniques and toolboxes for implementing the fractional-order controllers together with the scope of this book has been provided. To stimulate much interest of the readers, all necessary references has also been provided.

References

  1. 1.
    Ang, K.H., Chong, G., Li, Y.: PID control system analysis, design, and technology. IEEE Trans. Control Syst. Technol. 13(4), 559–576 (2005)CrossRefGoogle Scholar
  2. 2.
    Åström, K.J., Hägglund, T.: Advanced PID control. ISA-The Instrumentation, Systems, and Automation Society (2006)Google Scholar
  3. 3.
    Vilanova, R., Visioli, A.: PID Control in the Third Millennium. Springer (2012)Google Scholar
  4. 4.
    Visioli, A.: Practical PID Control. Springer Science & Business Media (2006)Google Scholar
  5. 5.
    Alfaro, V.M., Vilanova, R.: Model-reference robust tuning of 2DoF PI controllers for first-and second-order plus dead-time controlled processes. J. Process Control 22(2), 359–374 (2012)CrossRefGoogle Scholar
  6. 6.
    Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ortigueira, M.D.: Fractional Calculus for Scientists and Engineers, vol. 84. Springer Science & Business Media (2011)Google Scholar
  8. 8.
    Shah, P., Agashe, S.: Review of fractional PID controller. Mechatronics 38, 29–41 (2016)CrossRefGoogle Scholar
  9. 9.
    De Oliveira, E.C., Tenreiro Machado, J.A.: A review of definitions for fractional derivatives and integral. Math. Probl. Eng. (2014)Google Scholar
  10. 10.
    Caponetto, R.: Fractional Order Systems: Modeling and Control Applications. World Scientific (2010)Google Scholar
  11. 11.
    Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu-Batlle, V.: Fractional-Order Systems and Controls: Fundamentals and Applications. Springer Science & Business Media (2010)Google Scholar
  12. 12.
    Xue, D., Chen, Y., Atherton, D.P.: Linear Feedback Control: Analysis and Design with MATLAB. Siam (2007)Google Scholar
  13. 13.
    Krishna, B.T.: Studies on fractional order differentiators and integrators: a survey. Signal Process. 91(3), 386–426 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Li, H., Luo, Y., Chen, Y.: A fractional order proportional and derivative (FOPD) motion controller: tuning rule and experiments. IEEE Trans. Control Syst. Technol. 18(2), 516–520 (2009)CrossRefGoogle Scholar
  15. 15.
    Padula, F., Visioli, A.: Tuning rules for optimal PID and fractional-order PID controllers. J. Process Control. 21(1), 69–81 (2011)CrossRefGoogle Scholar
  16. 16.
    Sharma, R., Rana, K.P.S., Kumar, V.: Performance analysis of fractional order fuzzy PID controllers applied to a robotic manipulator. Expert Syst. Appl. 41(9), 4274–4289 (2014)CrossRefGoogle Scholar
  17. 17.
    Das, S., Saha, S., Das, S., Gupta, A.: On the selection of tuning methodology of FOPID controllers for the control of higher order processes. ISA Trans. 50(3), 376–388 (2011)CrossRefGoogle Scholar
  18. 18.
    Petráš, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer Science & Business Media (2011)Google Scholar
  19. 19.
    Luo, Y., Chen, Y.: Stabilizing and robust fractional order PI controller synthesis for first order plus time delay systems. Automatica 48(9), 2159–2167 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Margarita, R., Sergei, V.R., José, A.T.M., Juan, J.T.: Stability of fractional order systems. Math. Probl. Eng. (2013)Google Scholar
  21. 21.
    Tavazoei, M.S., Haeri, M.: A note on the stability of fractional order systems. Math. Comput. Simul. 79(5), 1566–1576 (2009)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Mudi, R.K., Dey, C.: Performance improvement of PI controllers through dynamic set-point weighting. ISA Trans. 50(2), 220–230 (2011)CrossRefGoogle Scholar
  23. 23.
    Sahu, R.K., Panda, S., Rout, U.K., Sahoo, D.K.: Teaching learning based optimization algorithm for automatic generation control of power system using 2-DOF PID controller. Int. J. Electr. Power Energy Syst. 77, 287–301 (2016)CrossRefGoogle Scholar
  24. 24.
    Zou, H., Li, H.: Improved PI-PD control design using predictive functional optimization for temperature model of a fluidized catalytic cracking unit. ISA Trans. 67, 215–221 (2017)CrossRefGoogle Scholar
  25. 25.
    Li, Z., Liu, L., Dehghan, S., Chen, Y., Xue, D.: A review and evaluation of numerical tools for fractional calculus and fractional order controls. Int. J. Control. 90(6), 1165–1181 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Tepljakov, A., Petlenkov, E., Belikov, J.: Application of Newton’s method to analog and digital realization of fractional-order controllers. Int. J. Microelectron. Comput. Sci. 3(2), 45–52 (2012)Google Scholar
  27. 27.
    Valério, D., Trujillo, J.J., Rivero, M., Machado, J.T., Baleanu, D.: Fractional calculus: a survey of useful formulas. Eur. Phys. J. Spec. Top. 222(8), 1827–1846 (2013)CrossRefGoogle Scholar
  28. 28.
    Freeborn, T.J.: A survey of fractional-order circuit models for biology and biomedicine. IEEE J. Emerg. Sel. Top. Circuits 3(3), 416–424 (2013)CrossRefGoogle Scholar
  29. 29.
    Sohal, J.S.: Improvement of artificial neural network based character recognition system, using SciLab. Optik 127(22), 10510–10518 (2016)CrossRefGoogle Scholar
  30. 30.
    Campbell, S.L., Chancelier, J.P., Nikoukhah, R.: Modeling and Simulation in SCILAB. Springer, New York (2006)Google Scholar
  31. 31.
    Bunks, C., Chancelier, J.P., Delebecque, F., Goursat, M., Nikoukhah, R., Steer, S.: Engineering and Scientific Computing with Scilab. Springer Science & Business Media (2012)Google Scholar
  32. 32.
    Magyar, Z., Žáková, K.: Scilab based remote control of experiments. IFAC Proc. Vol. 45(11), 206–211 (2012)CrossRefGoogle Scholar
  33. 33.
    Rohit, M.T., Ashish, M.K.: Digital Image Processing Using SCILAB. Springer, Cham (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Kishore Bingi
    • 1
    Email author
  • Rosdiazli Ibrahim
    • 2
  • Mohd Noh Karsiti
    • 2
  • Sabo Miya Hassan
    • 3
  • Vivekananda Rajah Harindran
    • 4
  1. 1.Institute of Autonomous SystemsUniversiti Teknologi PETRONASPerakMalaysia
  2. 2.Department of Electrical and Electronic EngineeringUniversiti Teknologi PETRONASPerakMalaysia
  3. 3.Department of Electrical and Electronics EngineeringAbubakar Tafawa Balewa UniversityBauchiNigeria
  4. 4.Instrumentation and ControlPETRONAS Group Technical SolutionsPetaling JayaMalaysia

Personalised recommendations