A Study on Histogram Normalization for Brain Tumour Segmentation from Multispectral MR Image Data

  • Ágnes Győrfi
  • Zoltán Karetka-Mezei
  • David Iclănzan
  • Levente Kovács
  • László SzilágyiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11896)


Absolute values in magnetic resonance image data do not say anything about the investigated tissues. All these numerical values are relative, they depend on the imaging device and they may vary from session to session. Consequently, there is a need for histogram normalization before any other processing is performed on MRI data. The Brain Tumor Segmentation (BraTS) challenge organized yearly since 2012 contributed to the intensification of the focus on tumor segmentation techniques based on multi-spectral MRI data. A large subset of methods developed within the bounds of this challenge declared that they rely on a classical histogram normalization method proposed by Nyúl et al. in 2000, which supposed that the corrected histogram of a certain organ composed of normal tissues only should be similar in all patients. However, this classical method did not count with possible lesions that can vary a lot in size, position, and shape. This paper proposes to perform a comparison of three sets of histogram normalization methods deployed in a brain tumor segmentation framework, and formulates recommendations regarding this preprocessing step.


Magnetic resonance imaging Brain tumor detection Tumor segmentation Histogram normalization 


  1. 1.
    Nyúl, L.G., Udupa, J.K., Zhang, X.: New variants of a method of MRI scale standardization. IEEE Trans. Med. Imaging 19(2), 143–150 (2000)CrossRefGoogle Scholar
  2. 2.
    Weisenfeld, N.L., Wartfeld, S.K.: Normalization of joint image-intensity statistics in MRI using the Kullback-Leibler divergence. In: IEEE International Symposium on Biomedical Imaging (ISBI), pp. 101–104. IEEE (2004)Google Scholar
  3. 3.
    Jäger, F., Deuerling-Zheng, Y., Frericks, B., Wacker, F., Hornegger, J.: A new method for MRI intensity standardization with application to lesion detection in the brain. In: Kobbelt, L., et al. (eds.) Vision Model, Visualization, pp. 269–276. AKA GmbH, Köln, Germany (2006)Google Scholar
  4. 4.
    Leung, K.K., et al.: Robust atrophy rate measurement in Alzheimer’s disease using multi-site serial MRI: tissue-specific intensity normalization and parameter selection. Neuroimage 50, 516–523 (2010)CrossRefGoogle Scholar
  5. 5.
    Shinohara, R.T., Crainiceanu, C.M., Caffo, B.S., Gaitán, M.I., Reich, D.S.: Population-wide principal component-based quantification of blood-brain-barrier dynamics in multiple sclerosis. Neuroimage 57(4), 1430–1446 (2011)CrossRefGoogle Scholar
  6. 6.
    Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Deep convolutional neural networks for the segmentation of gliomas in multi-sequence MRI. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds.) BrainLes 2015. LNCS, vol. 9556, pp. 131–143. Springer, Cham (2016). Scholar
  7. 7.
    Meier, R., et al.: Clinical evaluation of a fully-automatic segmentation method for longitudinal brain tumor volumetry. Sci. Rep. 6, 23376 (2016)CrossRefGoogle Scholar
  8. 8.
    Ellwaa, A., et al.: Brain tumor segmantation using random forest trained on iteratively selected patients. In: Crimi, A., et al. (eds.) BrainLes 2016. LNCS, vol. 10154, pp. 129–137. Springer, Cham (2017). Scholar
  9. 9.
    Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)CrossRefGoogle Scholar
  10. 10.
    Rezaei, M., et al.: A conditional adversarial network for semantic segmentation of brain tumor. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 241–252. Springer, Cham (2018). Scholar
  11. 11.
    Fidon, L., et al.: Scalable multimodal convolutional networks for brain tumour segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 285–293. Springer, Cham (2017). Scholar
  12. 12.
    Chen, X., Nguyen, B.P., Chui, C.K., Ong, S.H.: An automated framework for multi-label brain tumor segmentation based on kernel sparse representation. Acta Polytech. Hung. 14(1), 25–43 (2017)Google Scholar
  13. 13.
    Soltaninejad, M., Zhang, L., Lambrou, T., Yang, G., Allinson, N., Ye, X.: MRI brain tumor segmentation and patient survival prediction using random forests and fully convolutional networks. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 204–215. Springer, Cham (2018). Scholar
  14. 14.
    Chen, W., Liu, B.Q., Peng, S.T., Sun, J.W., Qiao, X.: Computer-aided grading of gliomas combining automatic segmentation and radiomics. Int. J. Biomed. Imaging 2018, 2512037 (2018)CrossRefGoogle Scholar
  15. 15.
    Wu, Y.P., Liu, B., Lin, Y.S., Yang, C., Wang, M.Y.: Grading glioma by radiomics with feature selection based on mutual information. J. Ambient Intell. Hum. Comput. 9(5), 1671–1682 (2018)CrossRefGoogle Scholar
  16. 16.
    Chang, J., et al.: A mix-pooling CNN architecture with FCRF for brain tumor segmentation. J. Vis. Commun. Image Represent. 58, 316–322 (2019)CrossRefGoogle Scholar
  17. 17.
    Soltaninejad, M., et al.: Supervised learning based multimodal MRI brain tumour segmentation using texture features from supervoxels. Comput. Methods Programs Biomed. 157, 69–84 (2018)CrossRefGoogle Scholar
  18. 18.
    Pinto, A., Pereira, S., Rasteiro, D., Silva, C.A.: Hierarchical brain tumour segmentation using extremely randomized trees. Pattern Recogn. 82, 105–117 (2018)CrossRefGoogle Scholar
  19. 19.
    Tustison, N.J., et al.: Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR. Neuroinformatics 13, 209–225 (2015)CrossRefGoogle Scholar
  20. 20.
    Lefkovits, L., Lefkovits, S., Szilágyi, L.: Brain tumor segmentation with optimized random forest. In: Crimi, A., et al. (eds.) BrainLes 2016. LNCS, vol. 10154, pp. 88–99. Springer, Cham (2017). Scholar
  21. 21.
    Szilágyi, L., Iclănzan, D., Kapás, Z., Szabó, Z., Győrfi, Á., Lefkovits, L.: Low and high grade glioma segmentation in multispectral brain MRI data. Acta Univ. Sapientia Informatica 10(1), 110–132 (2018)CrossRefGoogle Scholar
  22. 22.
    Győrfi, Á., Kovács, L., Szilágyi, L.: A feature ranking and selection algorithm for brain tumor segmentation in multi-spectral magnetic resonance image data. In: 41st Annual Conference of the IEEE EMBS. IEEE (2019, accepted paper)Google Scholar
  23. 23.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)CrossRefGoogle Scholar
  24. 24.
    Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34, 1993–2024 (2015)CrossRefGoogle Scholar
  25. 25.
    Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv: 1181.02629v3, 23 April 2019

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ágnes Győrfi
    • 1
    • 2
  • Zoltán Karetka-Mezei
    • 1
  • David Iclănzan
    • 1
  • Levente Kovács
    • 2
  • László Szilágyi
    • 1
    • 2
    Email author
  1. 1.Computational Intelligence Research GroupSapientia - Hungarian University of TransylvaniaTîrgu MureşRomania
  2. 2.University Research, Innovation and Service Center (EKIK)Óbuda UniversityBudapestHungary

Personalised recommendations