Advertisement

Sparse-Based Feature Selection for Discriminating Between Crops and Weeds Using Field Images

  • Daniel Guillermo García-MurilloEmail author
  • Andrés M. Álvarez
  • David Cárdenas-Peña
  • William Hincapie-Restrepo
  • German Castellanos-Dominguez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11896)

Abstract

Control of weed growing in yields is a critical task for reducing crop losses. Recently, image-based systems attempt to discriminate between crops and weeds from a set of features. Although some features have a physiological meaning, most of them are redundant or noisy. Therefore, selecting relevant features must result in interpretable and accurate results while reducing the computational complexity of the system. In this work, we introduce a sparse-based feature selection approach using the Lasso operator that eliminates noisy features aiming to improve the classification of crops. We evaluate our proposal on the Crop/Weed Field Image Dataset, for which we tune the parameters by maximizing the accuracy and minimizing feature dimension. Achieved performance results evidence that our proposed approach improves discrimination in comparison with other feature selection approaches, with the benefit of providing interpretability in weed/crop discrimination tasks.

Keywords

Lasso Feature Selection Weed/crop discrimination HOG 

Notes

Acknowledgment

“This work was developed under the research project CARACTERIZACIÓN DE CULTIVOS AGRÍCOLAS MEDIANTE ESTRATEGIAS DE TELEDETECCIÓN Y TÉCNICAS DE PROCESAMIENTO DE IMÁGENES (Hermes-36719) funded by Universidad Nacional de Colombia”.

References

  1. 1.
    Álvarez-Meza, A.M., Cárdenas-Peña, D., Castellanos-Dominguez, G.: Unsupervised kernel function building using maximization of information potential variability. In: Bayro-Corrochano, E., Hancock, E. (eds.) CIARP 2014. LNCS, vol. 8827, pp. 335–342. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-12568-8_41CrossRefGoogle Scholar
  2. 2.
    Duro, D.C., Franklin, S.E., et al.: Multi-scale object-based image analysis and feature selection of multi-sensor earth observation imagery using random forests. Int. J. Remote Sens. 33(14), 4502–4526 (2012)CrossRefGoogle Scholar
  3. 3.
    Fernández-Quintanilla, C., Peña, J., et al.: Is the current state of the art of weed monitoring suitable for site-specific weed management in arable crops? Weed Res. 58(4), 259–272 (2018)CrossRefGoogle Scholar
  4. 4.
    Friedman, J., Hastie, T., et al.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1 (2010)CrossRefGoogle Scholar
  5. 5.
    Hamuda, E., Mc Ginley, B., et al.: Automatic crop detection under field conditions using the HSV colour space and morphological operations. Comput. Electron. Agric. 133, 97–107 (2017)CrossRefGoogle Scholar
  6. 6.
    Hamuda, E., Mc Ginley, B., et al.: Improved image processing-based crop detection using Kalman filtering and the Hungarian algorithm. Comput. Electron. Agric. 148, 37–44 (2018)CrossRefGoogle Scholar
  7. 7.
    Han, J., Pei, J., et al.: Data Mining: Concepts and Techniques. Elsevier, Amsterdam (2011)zbMATHGoogle Scholar
  8. 8.
    Huang, H., Lan, Y., et al.: A semantic labeling approach for accurate weed mapping of high resolution UAV imagery. Sensors 18(7), 2113 (2018)CrossRefGoogle Scholar
  9. 9.
    Ma, L., Cheng, L., et al.: Training set size, scale, and features in geographic object-based image analysis of very high resolution unmanned aerial vehicle imagery. ISPRS J. Photogramm. Remote Sens. 102, 14–27 (2015)CrossRefGoogle Scholar
  10. 10.
    Ma, L., Fu, T., et al.: Evaluation of feature selection methods for object-based land cover mapping of unmanned aerial vehicle imagery using random forest and support vector machine classifiers. ISPRS Int. J. Geo-Inf. 6(2), 51 (2017)CrossRefGoogle Scholar
  11. 11.
    Peña-Barragán, J.M., Ngugi, M.K., et al.: Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ. 115(6), 1301–1316 (2011)CrossRefGoogle Scholar
  12. 12.
    Perez-Sanz, F., Navarro, P.J., et al.: Plant phenomics: an overview of image acquisition technologies and image data analysis algorithms. GigaScience 6(11), gix092 (2017)CrossRefGoogle Scholar
  13. 13.
    Sankaran, S., Khot, L.R., et al.: Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: a review. Eur. J. Agron. 70, 112–123 (2015)CrossRefGoogle Scholar
  14. 14.
    Siddiqi, M.H., Lee, S.-W., et al.: Weed image classification using wavelet transform, stepwise linear discriminant analysis, and support vector machines for an automatic spray control system. J. Inf. Sci. Eng. 30(4), 1227–1244 (2014)Google Scholar
  15. 15.
    Singh, A., Ganapathysubramanian, B., et al.: Machine learning for high-throughput stress phenotyping in plants. Trends Plant Sci. 21(2), 110–124 (2016)CrossRefGoogle Scholar
  16. 16.
    Stumpf, A., Kerle, N.: Object-oriented mapping of landslides using random forests. Remote Sens. Environ. 115(10), 2564–2577 (2011)CrossRefGoogle Scholar
  17. 17.
    Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc.: Ser. B (Methodol.) 58(1), 267–288 (1996)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Vieira, M.A., Formaggio, A.R., et al.: Object based image analysis and data mining applied to a remotely sensed landsat time-series to map sugarcane over large areas. Remote Sens. Environ. 123, 553–562 (2012)CrossRefGoogle Scholar
  19. 19.
    Wang, A., Zhang, W., et al.: A review on weed detection using ground-based machine vision and image processing techniques. Comput. Electron. Agric. 158, 226–240 (2019)CrossRefGoogle Scholar
  20. 20.
    Weis, M., Sökefeld, M.: Detection and identification of weeds. In: Oerke, E.C., Gerhards, R., Menz, G., Sikora, R. (eds.) Precision Crop Protection - The Challenge and Use of Heterogeneity, pp. 119–134. Springer, Dordrecht (2010).  https://doi.org/10.1007/978-90-481-9277-9_8CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Daniel Guillermo García-Murillo
    • 1
    Email author
  • Andrés M. Álvarez
    • 1
  • David Cárdenas-Peña
    • 2
  • William Hincapie-Restrepo
    • 3
  • German Castellanos-Dominguez
    • 1
  1. 1.Signal Processing and Recognition GroupUniversidad Nacional de ColombiaManizalesColombia
  2. 2.Automatic Research GroupUniversidad Tecnológica de PereiraPereiraColombia
  3. 3.Physicochemistry of Terrestrial Fluids GroupUniversidad de CaldasManizalesColombia

Personalised recommendations