Advertisement

Brain Tumour Segmentation from Multispectral MR Image Data Using Ensemble Learning Methods

  • Ágnes Győrfi
  • Levente Kovács
  • László SzilágyiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11896)

Abstract

The number of medical imaging devices is quickly and steadily rising, generating an increasing amount of image records day by day. The number of qualified human experts able to handle this data cannot follow this trend, so there is a strong need to develop reliable automatic segmentation and decision support algorithms. The Brain Tumor Segmentation Challenge (BraTS), first organized seven years ago, provoked a strong intensification of the development of brain tumor detection and segmentation algorithms. Beside many others, several ensemble learning solutions have been proposed lately to the above mentioned problem. This study presents an evaluation framework developed to evaluate the accuracy and efficiency of these algorithms deployed in brain tumor segmentation, based on the BraTS 2016 train data set. All evaluated algorithms proved suitable to provide acceptable accuracy in segmentation, but random forest was found the best, both in terms of precision and efficiency.

Keywords

Magnetic resonance imaging Image segmentation Tumor detection Brain tumor Ensemble learning 

References

  1. 1.
    Mohan, G., Subashini, M.M.: MRI based medical image analysis: survey on brain tumor grade classification. Biomed. Signal Process. Control 39, 139–161 (2018)CrossRefGoogle Scholar
  2. 2.
    Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34, 1993–2024 (2015)CrossRefGoogle Scholar
  3. 3.
    Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv: 1181.02629v3, 23 April 2019
  4. 4.
    Phophalia, A., Maji, P.: Multimodal brain tumor segmentation using ensemble of forest method. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 159–168. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75238-9_14CrossRefGoogle Scholar
  5. 5.
    Tustison, N.J., et al.: Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR. Neuroinformatics 13, 209–225 (2015)CrossRefGoogle Scholar
  6. 6.
    Lefkovits, L., Lefkovits, S., Szilágyi, L.: Brain tumor segmentation with optimized random forest. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds.) BrainLes 2016. LNCS, vol. 10154, pp. 88–99. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-55524-9_9CrossRefGoogle Scholar
  7. 7.
    Lefkovits, S., Szilágyi, L., Lefkovits, L.: Brain tumor segmentation and survival prediction using a cascade of random forests. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 334–345. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-11726-9_30CrossRefGoogle Scholar
  8. 8.
    Islam, A., Reza, S.M.S., Iftekharuddin, K.M.: Multifractal texture estimation for detection and segmentation of brain tumors. IEEE Trans. Biomed. Eng. 60, 3204–3215 (2013)CrossRefGoogle Scholar
  9. 9.
    Pinto, A., Pereira, S., Rasteiro, D., Silva, C.A.: Hierarchical brain tumour segmentation using extremely randomized trees. Pattern Recogn. 82, 105–117 (2018)CrossRefGoogle Scholar
  10. 10.
    Zhang, N., Ruan, S., Lebonvallet, S., Liao, Q., Zhou, Y.: Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation. Comput. Vis. Image Underst. 115, 256–269 (2011)CrossRefGoogle Scholar
  11. 11.
    Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35, 1240–1251 (2016)CrossRefGoogle Scholar
  12. 12.
    Shin, H.C., et al.: Deep nonvolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35, 1285–1298 (2016)CrossRefGoogle Scholar
  13. 13.
    Kim, G.: Brain tumor segmentation using deep fully convolutional neural networks. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 344–357. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75238-9_30CrossRefGoogle Scholar
  14. 14.
    Li, Y., Shen, L.: Deep learning based multimodal brain tumor diagnosis. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 149–158. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75238-9_13CrossRefGoogle Scholar
  15. 15.
    Zhao, X.M., Wu, Y.H., Song, G.D., Li, Z.Y., Zhang, Y.Z., Fan, Y.: A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Med. Image Anal. 43, 98–111 (2018)CrossRefGoogle Scholar
  16. 16.
    Juan-Albarracín, J., et al.: Automated glioblastoma segmentation based on a multiparametric structured unsupervised classification. PLoS One 10(5), e0125143 (2015)CrossRefGoogle Scholar
  17. 17.
    Menze, B.H., van Leemput, K., Lashkari, D., Riklin-Raviv, T., Geremia, E., Alberts, E., et al.: A generative probabilistic model and discriminative extensions for brain lesion segmentation - with application to tumor and stroke. IEEE Trans. Med. Imaging 35, 933–946 (2016)CrossRefGoogle Scholar
  18. 18.
    Szilágyi, L., Szilágyi, S.M., Benyó, B., Benyó, Z.: Intensity inhomogeneity compensation and segmentation of MR brain images using hybrid \(c\)-means clustering models. Biomed. Signal Process. Control 6, 3–12 (2011)CrossRefGoogle Scholar
  19. 19.
    Szilágyi, L., Lefkovits, L., Benyó, B.: Automatic brain tumor segmentation in multispectral MRI volumes using a fuzzy \(c\)-means cascade algorithm. In: Proceedings of the 12th International Conference on Fuzzy Systems and Knowledge Discovery, pp. 285–291. IEEE (2015)Google Scholar
  20. 20.
    Lê, M., et al.: Personalized radiotherapy planning based on a computational tumor growth model. IEEE Trans. Med. Imaging 36, 815–825 (2017)CrossRefGoogle Scholar
  21. 21.
    Hamamci, A., Kucuk, N., Karamam, K., Engin, K., Unal, G.: Tumor-Cut: segmentation of brain tumors on contranst enhanced MR images for radiosurgery applicarions. IEEE Trans. Med. Imaging 31, 790–804 (2012)CrossRefGoogle Scholar
  22. 22.
    Sahdeva, J., Kumar, V., Gupta, I., Khandelwal, N., Ahuja, C.K.: A novel content-based active countour model for brain tumor segmentation. Magn. Reson. Imaging 30, 694–715 (2012)CrossRefGoogle Scholar
  23. 23.
    Njeh, I., et al.: 3D multimodal MRI brain glioma tumor and edema segmentation: a graph cut distribution matching approach. Comput. Med. Imaging Graph. 40, 108–119 (2015)CrossRefGoogle Scholar
  24. 24.
    Gordillo, N., Montseny, E., Sobrevilla, P.: State of the art survey on MRI brain tumor segmentation. Magn. Reson. Imaging 31, 1426–1438 (2013)CrossRefGoogle Scholar
  25. 25.
    Vovk, U., Pernus̆, F., Likar, B.: A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans. Med. Imaging 26, 405–421 (2007)CrossRefGoogle Scholar
  26. 26.
    Szilágyi, L., Szilágyi, S.M., Benyó, B.: Efficient inhomogeneity compensation using fuzzy \(c\)-means clustering models. Comput. Methods Programs Biomed. 108, 80–89 (2012)CrossRefGoogle Scholar
  27. 27.
    Tustison, N.J., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010)CrossRefGoogle Scholar
  28. 28.
    Szilágyi, L., Iclănzan, D., Kapás, Z., Szabó, Z., Győrfi, Á., Lefkovits, L.: Low and high grade glioma segmentation in multispectral brain MRI data. Acta Univ. Sapientia Informatica 10(1), 110–132 (2018)CrossRefGoogle Scholar
  29. 29.
    Győrfi, Á., Kovács, L., Szilágyi, L.: A feature ranking and selection algorithm for brain tumor segmentation in multi-spectral magnetic resonance image data. In: 41st Annual International Conferences of the IEEE EMBS. IEEE (2019, accepted paper)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ágnes Győrfi
    • 1
    • 2
  • Levente Kovács
    • 2
  • László Szilágyi
    • 1
    • 2
    Email author
  1. 1.Computational Intelligence Research GroupSapientia - Hungarian University of TransylvaniaTîrgu MureşRomania
  2. 2.University Research, Innovation and Service Center (EKIK)Óbuda UniversityBudapestHungary

Personalised recommendations