Role of EMG Rectification for Corticomuscular and Intermuscular Coherence Estimation of Spinocerebellar Ataxia Type 2 (SCA2)

  • Y. Ruiz-GonzalezEmail author
  • L. Velázquez-Pérez
  • R. Rodríguez-Labrada
  • R. Torres-Vega
  • U. Ziemann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11896)


Corticomuscular and intermuscular coherence are established methods to study connectivity between activity of neurons in sensorimotor cortex measured with electroencephalography (EEG) and muscle measured with electromyography (EMG), or between muscles, in a variety of neurological conditions. However, there is a debate on the importance of EMG signal rectification before coherence estimation. This paper studies the effects of EMG rectification in corticomuscular and intermuscular coherence estimation from SCA2 patients and prodromal SCA2 gene mutation carriers in comparison to healthy controls. EEG and EMG were recorded from 20 SCA2 patients, 16 prodromal SCA2 gene mutation carriers and 26 healthy control subjects during a motor task in upper or lower limbs. Coherence estimations were carried out using the non-rectified raw EMG signal vs. the rectified EMG signal. The results showed that EMG rectification impairs the level of significance of the differences in corticomuscular and intermuscular coherence between SCA2 patients and prodromal SCA2 gene mutation carriers vs. healthy controls in the beta-band, and also results in overall lower coherence values.


Corticomuscular coherence Intermuscular coherence EMG Rectification Raw EMG 


  1. 1.
    Giunti, P., et al.: The role of the SCA2 trinucleotide repeat expansion in 89 autosomal dominant cerebellar ataxia families. Frequency, clinical and genetic correlates. Brain J. Neurol. 121(Pt 3), 459–467 (1998)Google Scholar
  2. 2.
    Velázquez-Pérez, L., Rodríguez-Labrada, R., García-Rodríguez, J.C., Almaguer-Mederos, L.E., Cruz-Mariño, T., Laffita-Mesa, J.M.: A comprehensive review of spinocerebellar ataxia type 2 in cuba. Cerebellum 10(2), 184–198 (2011)Google Scholar
  3. 3.
    Velázquez-Pérez, L., et al.: Saccade velocity is reduced in presymptomatic spinocerebellar ataxia type 2. Clin. Neurophysiol. 120(3), 632–635 (2009)Google Scholar
  4. 4.
    Velázquez Pérez, L., Rodríguez Labrada, R.: Manifestaciones tempranas de la Ataxia Espinocerebelosa tipo 2. Ediciones Holguin, Cuba (2012)Google Scholar
  5. 5.
    Rodríguez-Labrada, R., et al.: Saccadic latency is prolonged in spinocerebellar ataxia type 2 and correlates with the frontal-executive dysfunctions. J. Neurol. Sci. 306(1–2), 103–107 (2011)Google Scholar
  6. 6.
    Rodríguez-Labrada, R., et al.: Subtle rapid eye movement sleep abnormalities in presymptomatic spinocerebellar ataxia type 2 gene carriers. Mov. Disord. 26(2), 347–350 (2011)Google Scholar
  7. 7.
    Velázquez-Pérez, L., et al.: Abnormal corticospinal tract function and motor cortex excitability in non-ataxic SCA2 mutation carriers: a TMS study. Clin. Neurophysiol. 127(8), 2713–2719 (2016)Google Scholar
  8. 8.
    Linnemann, C., et al.: Peripheral neuropathy in spinocerebellar ataxia type 1, 2, 3, and 6. Cerebellum 15(2), 165–173 (2016)Google Scholar
  9. 9.
    Velázquez-Pérez, L., et al.: Sleep disorders in spinocerebellar ataxia type 2 patients. Neurodegener. Dis. 8(6), 447–454 (2011)Google Scholar
  10. 10.
    Velázquez-Pérez, L., et al.: Early corticospinal tract damage in prodromal SCA2 revealed by EEG-EMG and EMG-EMG coherence. Clin. Neurophysiol. 128(12), 2493–2502 (2017)Google Scholar
  11. 11.
    Velázquez-Pérez, L., et al.: Comprehensive study of early features in spinocerebellar ataxia 2: delineating the prodromal stage of the disease. Cerebellum 13(5), 568–579 (2014)Google Scholar
  12. 12.
    Velázquez-Pérez, L., Rodríguez-Labrada, R., García-Rodríguez, J.C., Almaguer-Mederos, L.E., Cruz-Mariño, T., Laffita-Mesa, J.M.: A comprehensive review of spinocerebellar ataxia type 2 in Cuba. Cerebellum Lond. Engl. 10(2), 184–198 (2011)Google Scholar
  13. 13.
    Velázquez-Pérez, L., et al.: Central motor conduction time as prodromal biomarker in spinocerebellar ataxia type 2. Mov. Disord. Off. J. Mov. Disord. Soc. 31(4), 603–604 (2016)Google Scholar
  14. 14.
    Velázquez-Pérez, L., et al.: Progression of corticospinal tract dysfunction in pre-ataxic spinocerebellar ataxia type 2: a two-years follow-up TMS study. Clin. Neurophysiol. 129(5), 895–900 (2018)Google Scholar
  15. 15.
    Fisher, K.M., Zaaimi, B., Williams, T.L., Baker, S.N., Baker, M.R.: Beta-band intermuscular coherence: a novel biomarker of upper motor neuron dysfunction in motor neuron disease. Brain 135(9), 2849–2864 (2012)Google Scholar
  16. 16.
    Bowyer, S.M.: Coherence a measure of the brain networks: past and present. Neuropsychiatr. Electrophysiol. 2(1), 1 (2016)Google Scholar
  17. 17.
    Mima, T., Toma, K., Koshy, B., Hallett, M.: Coherence between cortical and muscular activities after subcortical stroke. Stroke 32(11), 2597–2601 (2001)Google Scholar
  18. 18.
    Baker, M.R., Baker, S.N.: The effect of diazepam on motor cortical oscillations and corticomuscular coherence studied in man. J. Physiol. 546(3), 931–942 (2003)Google Scholar
  19. 19.
    Caviness, J.N., Shill, H.A., Sabbagh, M.N., Evidente, V.G.H., Hernandez, J.L., Adler, C.H.: Corticomuscular coherence is increased in the small postural tremor of parkinson’s disease: postural tremor in PD. Mov. Disord. 21(4), 492–499 (2006)Google Scholar
  20. 20.
    Jung, K.-Y., et al.: Increased corticomuscular coherence in idiopathic REM sleep behavior disorder. Front. Neurol. 3, 60 (2012)Google Scholar
  21. 21.
    Velázquez-Pérez, L., et al.: Corticomuscular coherence: a novel tool to assess the pyramidal tract dysfunction in spinocerebellar ataxia type 2. Cerebellum 16(2), 602–606 (2017)Google Scholar
  22. 22.
    Farina, D., Merletti, R., Enoka, R.M.: The extraction of neural strategies from the surface EMG. J. Appl. Physiol. 96(4), 1486–1495 (2004)Google Scholar
  23. 23.
    Farina, D., Merletti, R., Enoka, R.M.: The extraction of neural strategies from the surface EMG: an update. J. Appl. Physiol. 117(11), 1215–1230 (2014)Google Scholar
  24. 24.
    Myers, L.J., et al.: Rectification and non-linear pre-processing of EMG signals for cortico-muscular analysis. J. Neurosci. Methods 124(2), 157–165 (2003)Google Scholar
  25. 25.
    McClelland, V.M., Cvetkovic, Z., Mills, K.R.: Inconsistent effects of EMG rectification on coherence analysis. J. Physiol. 592(1), 249–250 (2014)Google Scholar
  26. 26.
    Rosenberg, J.R., Amjad, A.M., Breeze, P., Brillinger, D.R., Halliday, D.M.: The fourier approach to the identification of functional coupling between neuronal spike trains. Prog. Biophys. Mol. Biol. 53(1), 1–31 (1989)Google Scholar
  27. 27.
    Random Data: Analysis and Measurement Procedures, 4th edn. Accessed 20 November 2018
  28. 28.
    Negro, F., Keenan, K., Farina, D.: Power spectrum of the rectified EMG: when and why is rectification beneficial for identifying neural connectivity? J. Neural Eng. 12(3), 036008 (2015)Google Scholar
  29. 29.
    Mima, T., Hallett, M.: Electroencephalographic analysis of cortico-muscular coherence: reference effect, volume conduction and generator mechanism. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 110(11), 1892–1899 (1999)Google Scholar
  30. 30.
    Farina, D., Negro, F., Jiang, N.: Identification of common synaptic inputs to motor neurons from the rectified electromyogram. J. Physiol. 591(10), 2403–2418 (2013)Google Scholar
  31. 31.
    Halliday, D.M., Farmer, S.F.: On the need for rectification of surface EMG. J. Neurophysiol. 103(6), 3547 (2010)Google Scholar
  32. 32.
    Yao, B., Salenius, S., Yue, G.H., Brown, R.W., Liu, J.Z.: Effects of surface EMG rectification on power and coherence analyses: an EEG and MEG study. J. Neurosci. Methods 159(2), 215–223 (2007)Google Scholar
  33. 33.
    Neto, O.P., Christou, E.A.: Rectification of the EMG signal impairs the identification of oscillatory input to the muscle. J. Neurophysiol. 103(2), 1093–1103 (2010)Google Scholar
  34. 34.
    McClelland, V.M., Cvetkovic, Z., Mills, K.R.: Rectification of the EMG is an unnecessary and inappropriate step in the calculation of corticomuscular coherence. J. Neurosci. Methods 205(1), 190–201 (2012)Google Scholar
  35. 35.
    Oostenveld, R., Fries, P., Maris, E., Schoffelen, J.-M.: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 1–9 (2011)Google Scholar
  36. 36.
    Thomson, D.J.: Spectrum Estimation and Harmonic Analysis. IEEE Proc. 70, 1055–1096 (1982)Google Scholar
  37. 37.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007)zbMATHGoogle Scholar
  38. 38.
    Maris, E., Oostenveld, R.: Nonparametric statistical testing of EEG- and MEG-data. J. Neurosci. Methods 164(1), 177–190 (2007)Google Scholar
  39. 39.
    Farmer, S.F., Swash, M., Ingram, D.A., Stephens, J.A.: Changes in motor unit synchronization following central nervous lesions in man. J. Physiol. 463(1), 83–105 (1993)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Y. Ruiz-Gonzalez
    • 1
    Email author
  • L. Velázquez-Pérez
    • 2
  • R. Rodríguez-Labrada
    • 3
  • R. Torres-Vega
    • 3
  • U. Ziemann
    • 4
  1. 1.Informatics Research CentreUniversidad Central “Marta Abreu” de Las VillasSanta ClaraCuba
  2. 2.Cuban Academy of SciencesHavanaCuba
  3. 3.Department Clinical NeurophysiologyCentre for the Research and Rehabilitation of Hereditary AtaxiasHolguinCuba
  4. 4.Department Neurology and Stroke, and Hertie Institute for Clinical Brain ResearchUniversity TübingenTübingenGermany

Personalised recommendations