Production Strategies for Commercialization of PHA

  • Geeta GahlawatEmail author
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


The most important criterion for large-scale production of polyhydroxyalkanoate (PHA) is sustainability in terms of supply and cost. The sustainable production of PHAs could be achieved by utilization of renewable, inexpensive carbon substrates and adopting efficient extraction processes. The operational cost of PHAs production process can be significantly minimized by using high yielding strains and various process optimization strategies. This chapter focuses on various strategies used in literature for cost-effective sustainable production of PHA.


Sustainability Renewable substrates Genetic engineering Mathematical modelling Downstream recovery 


  1. Akaraonye E, Keshavarz T, Roy I (2010) Production of polyhydroxyalkanoates: the future green materials of choice. J Chem Technol Biotechnol 85(6):732–743Google Scholar
  2. Alsafadi D, Al-Mashaqbeh O (2017) A one-stage cultivation process for the production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) from olive mill wastewater by Haloferax mediterranei. New Biotechnol 34:47–53CrossRefGoogle Scholar
  3. Amulya K, Jukuri S, Mohan SV (2015) Sustainable multistage process for enhanced productivity of bioplastics from waste remediation through aerobic dynamic feeding strategy: process integration for up-scaling. Bioresour Technol 188:231–239PubMedCrossRefPubMedCentralGoogle Scholar
  4. Anterrieu S, Quadri L, Geurkink B, Dinkla I, Bengtsson S, Arcos-Hernandez M, Alexandersson T, Morgan-Sagastume F, Karlsson A, Hjort M, Karabegovic L (2014) Integration of biopolymer production with process water treatment at a sugar factory. New Biotechnol 31:308–323CrossRefGoogle Scholar
  5. Aramvash A, Gholami-Banadkuki N, Moazzeni-Zavareh F, Hajizadeh-Turchi S (2015) An environmentally friendly and efficient method for extraction of PHB biopolymer with non-halogenated solvents. J Microbiol Biotechnol 25(11):1936–1943PubMedCrossRefPubMedCentralGoogle Scholar
  6. Aramvash A, Gholami-Banadkuki N, Seyedkarimi MS (2016) An efficient method for the application of PHA-poor solvents to extract polyhydroxybutyrate from Cupriavidus necator. Biotechnol Prog 32(6):1480–1487PubMedCrossRefPubMedCentralGoogle Scholar
  7. Aramvash A, Moazzeni Zavareh F, Gholami Banadkuki N (2018) Comparison of different solvents for extraction of polyhydroxybutyrate from Cupriavidus necator. Eng Life Sci 18(1):20–28CrossRefGoogle Scholar
  8. Arikawa H, Sato S, Fujiki T, Matsumoto K (2017) Simple and rapid method for isolation and quantitation of polyhydroxyalkanoate by SDS-sonication treatment. J Biosci Bioeng 124(2):250–254PubMedCrossRefPubMedCentralGoogle Scholar
  9. Aslan AN, Ali MM, Morad NA, Tamunaidu P (2016) Polyhydroxyalkanoates production from waste biomass. IOP Conf Ser Earth Environ Sci 36(1):012040CrossRefGoogle Scholar
  10. Atlić A, Koller M, Scherzer D, Kutschera C, Grillo-Fernandes E, Horvat P, Chiellini E, Braunegg G (2011) Continuous production of poly([R]-3-hydroxybutyrate) by Cupriavidus necator in a multistage bioreactor cascade. Appl Microbiol Biotechnol 91(2):295–304PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bengtsson S, Karlsson A, Alexandersson T, Quadri L, Hjort M, Johansson P, Morgan-Sagastume F, Anterrieu S, Arcos-Hernandez M, Karabegovic L, Magnusson P (2017) A process for polyhydroxyalkanoate (PHA) production from municipal wastewater treatment with biological carbon and nitrogen removal demonstrated at pilot-scale. New Biotechnol 35:42–53CrossRefGoogle Scholar
  12. Berwig KH, Baldasso C, Dettmer A (2016) Production and characterization of poly (3-hydroxybutyrate) generated by Alcaligenes latus using lactose and whey after acid protein precipitation process. Bioresour Technol 218:31–37PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bhatia SK, Kim JH, Kim MS, Kim J, Hong JW, Hong YG, Kim HJ, Jeon JM, Kim SH, Ahn J, Lee H (2018) Production of (3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer from coffee waste oil using engineered Ralstonia eutropha. Bioprocess Biosyst Eng 41(2):229–235PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bhattacharyya A, Saha J, Haldar S, Bhowmic A, Mukhopadhyay UK, Mukherjee J (2014) Production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei using rice-based ethanol stillage with simultaneous recovery and re-use of medium salts. Extremophiles 18(2):463–470PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett 8:791–808CrossRefGoogle Scholar
  16. Cavalheiro JMBT, de Almeida MCMD, Grandfils C, da Fonseca MMR (2009) Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem 44(5):509–515CrossRefGoogle Scholar
  17. Cavalheiro JMBT, Raposo RS, de Almeida MCMD, Teresa CM, Sevrin C, Grandfils C, da Fonseca MMR (2012) Effect of cultivation parameters on the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) by Cupriavidus necator using waste glycerol. Biores Technol 111:391–397CrossRefGoogle Scholar
  18. Chakravarty P, Mhaisalkar V, Chakrabarti T (2010) Study on poly-hydroxyalkanoate (PHA) production in pilot scale continuous mode wastewater treatment system. Bioresour Technol 101:2896–2899PubMedCrossRefPubMedCentralGoogle Scholar
  19. Chang HN, Jung K, Lee JC, Woo HC (2014) Multi-stage continuous high cell density culture systems: A review. Biotechnol Adv 32(2):514–525PubMedCrossRefPubMedCentralGoogle Scholar
  20. Chanprateep S (2010) Current trends in biodegradable polyhydroxyalkanoates. J Biosci Bioeng 110(6):621–632PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chen GQ, Jiang XR (2018) Engineering microorganisms for improving polyhydroxyalkanoate biosynthesis. Curr Opin Biotechnol 53:20–25PubMedCrossRefPubMedCentralGoogle Scholar
  22. Chen Z, Huang L, Wen Q, Guo Z (2015) Efficient polyhydroxyalkanoate (PHA) accumulation by a new continuous feeding mode in three-stage mixed microbial culture (MMC) PHA production process. J Biotechnol 209:68–75PubMedCrossRefPubMedCentralGoogle Scholar
  23. Chen Z, Guo Z, Wen Q, Huang L, Bakke R, Du M (2016) Modeling polyhydroxyalkanoate (PHA) production in a newly developed aerobic dynamic discharge (ADD) culture enrichment process. Chem Eng J 298:36–43CrossRefGoogle Scholar
  24. Chen X, Yin J, Ye J, Zhang H, Che X, Ma Y, Li M, Wu LP, Chen GQ (2017) Engineering Halomonas bluephagenesis TD01 for non-sterile production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate). Bioresour Technol 244:534–541PubMedCrossRefPubMedCentralGoogle Scholar
  25. Ciesielski S, Możejko J, Pisutpaisal N (2015) Plant oils as promising substrates for polyhydroxyalkanoates production. J Clean Prod 106:408–421CrossRefGoogle Scholar
  26. Colombo B, Favini F, Scaglia B, Sciarria TP, D’Imporzano G, Pognani M, Alekseeva A, Eisele G, Cosentino C, Adani F (2017) Enhanced polyhydroxyalkanoate (PHA) production from the organic fraction of municipal solid waste by using mixed microbial culture. Biotechnol Biofuels 10(1):201PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cruz MV, Gouveia AR, Dionísio M, Freitas F, Reis MA (2019) A process engineering approach to improve production of P(3HB) by Cupriavidus necator from used cooking oil. Int J Polym SciGoogle Scholar
  28. Cui YW, Zhang HY, Lu PF, Peng YZ (2016) Effects of carbon sources on the enrichment of halophilic polyhydroxyalkanoate-storing mixed microbial culture in an aerobic dynamic feeding process. Sci Rep 6:30766PubMedPubMedCentralCrossRefGoogle Scholar
  29. de Paula FC, de Paula CB, Gomez JGC, Steinbüchel A, Contiero J (2017) Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) production from biodiesel by-product and propionic acid by mutant strains of Pandoraea sp. Biotechnol Prog 33(4):1077–1084PubMedCrossRefPubMedCentralGoogle Scholar
  30. Dhangdhariya JH, Dubey S, Trivedi HB, Pancha I, Bhatt JK, Dave BP, Mishra S (2015) Polyhydroxyalkanoate from marine Bacillus megaterium using CSMCRI’s Dry Sea Mix as a novel growth medium. Int J Biol Macromol 76:254–261PubMedCrossRefGoogle Scholar
  31. Dircks K, Beun JJ, Van Loosdrecht M, Heijnen JJ, Henze M (2001) Glycogen metabolism in aerobic mixed cultures. Biotechnol Bioeng 73:85–94PubMedCrossRefGoogle Scholar
  32. Divyashree M, Shamala T, Rastogi N (2009) Isolation of polyhydroxyalkanoate from hydrolyzed cells of Bacillus flexus using aqueous two-phase system containing polyethylene glycol and phosphate. Biotechnol Bioproc Eng 14(4):482–489CrossRefGoogle Scholar
  33. Dong Z, Sun X (2000) A new method of recovering polyhydroxyalkanoate from Azotobacter chroococcum. Chin Sci Bull 45(3):252–256CrossRefGoogle Scholar
  34. Du G, Chen J, Yu J, Lun S (2001) Continuous production of poly-3-hydroxybutyrate by Ralstonia eutropha in a two-stage culture system. J Biotechnol 88(1):59–65PubMedCrossRefPubMedCentralGoogle Scholar
  35. Du C, Sabirova J, Soetaert W, Ki CLS (2012) Polyhydroxyalkanoates production from low-cost sustainable raw materials. Curr Chem Biol 6:14–25Google Scholar
  36. Duque AF, Oliveira CS, Carmo IT, Gouveia AR, Pardelha F, Ramos AM, Reis MA (2014) Response of a three-stage process for PHA production by mixed microbial cultures to feedstock shift: impact on polymer composition. New Biotechnol 31:276–288CrossRefGoogle Scholar
  37. Fei T, Cazeneuve S, Wen Z, Wu L, Wang T (2016) Effective recovery of poly-β-hydroxybutyrate (PHB) biopolymer from Cupriavidus necator using a novel and environmentally friendly solvent system. Biotechnol Prog 38:678–685CrossRefGoogle Scholar
  38. Fernández-Dacosta C, Posada JA, Kleerebezem R, Cuellar MC, Ramirez A (2015) Microbial community-based polyhydroxyalkanoates (PHAs) production from wastewater: techno-economic analysis and ex-ante environmental assessment. Bioresour Technol 185:368–377PubMedCrossRefPubMedCentralGoogle Scholar
  39. Fiorese ML, Freitas F, Pais J, Ramos AM, de Aragão GM, Reis MA (2009) Recovery of polyhydroxybutyrate (PHB) from Cupriavidus necator biomass by solvent extraction with 1, 2-propylene carbonate. Eng Life Sci 9(6):454–461CrossRefGoogle Scholar
  40. Fradinho JC, Domingos JMB, Carvalho G, Oehmen A, Reis MAM (2013) Polyhydroxyalkanoates production by a mixed photosynthetic consortium of bacteria and algae. Bioresour Technol 132:146–153PubMedCrossRefPubMedCentralGoogle Scholar
  41. Franz A, Song HS, Ramkrishna D, Kienle A (2011) Experimental and theoretical analysis of poly (β-hydroxybutyrate) formation and consumption in Ralstonia eutropha. Biochem Eng J 55(1):49–58CrossRefGoogle Scholar
  42. Gahlawat G, Kumar Soni S (2019) Study on sustainable recovery and extraction of Polyhydroxyalkanoates (PHAs) produced by Cupriavidus necator using waste glycerol for medical applications. Chem Biochem Eng Q 33(1):99–110CrossRefGoogle Scholar
  43. Gahlawat G, Soni SK (2017) Valorization of waste glycerol for the production of poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer by Cupriavidus necator and extraction in a sustainable manner. Bioresour Technol 243:492–501PubMedPubMedCentralCrossRefGoogle Scholar
  44. Gahlawat G, Srivastava A (2012) Estimation of fundamental kinetic parameters of Polyhydroxybutyrate fermentation process of Azohydromonas australica using statistical approach of media optimization. Appl Biochem Biotechnol 168(5):1051–1064PubMedPubMedCentralCrossRefGoogle Scholar
  45. Gahlawat G, Srivastava A (2013) Development of a mathematical model for the growth associated Polyhydroxybutyrate fermentation by Azohydromonas australica and its use for the design of fed-batch cultivation strategies. Bioresour Technol 137:98–105PubMedPubMedCentralCrossRefGoogle Scholar
  46. Gahlawat G, Srivastava A (2014) Microbial production of PHB and its copolymers (Ph.D. thesis). Indian Institute of Technology Delhi, IndiaGoogle Scholar
  47. Gahlawat G, Srivastava A (2017) Model-based nutrient feeding strategies for the increased production of Polyhydroxybutyrate (PHB) by Alcaligenes latus. Appl Biochem Biotechnol 183:530–542PubMedCrossRefGoogle Scholar
  48. García IL, López JA, Dorado MP, Kopsahelis N, Alexandri M, Papanikolaou S, Villar MA, Koutinas AA (2013) Evaluation of by-products from the biodiesel industry as fermentation feedstock for poly (3-hydroxybutyrate-co-3-hydroxyvalerate) production by Cupriavidus necator. Biores Technol 130:16–22CrossRefGoogle Scholar
  49. Grothe E, Chisti Y (2000) Poly(β-hydroxybutyric acid) thermoplastic production by Alcaligenes latus: behavior of fed-batch cultures. Bioprocess Eng 22(5):441–449CrossRefGoogle Scholar
  50. Haas R, Jin B, Zepf FT (2008) Production of poly (3-hydroxybutyrate) from waste potato starch. Biosc Biotechnol Biochem 72(1):253–256CrossRefGoogle Scholar
  51. Haas C, El-Najjar T, Virgolini N, Smerilli M, Neureiter M (2018) High cell-density production of poly (3-hydroxybutyrate) in a membrane bioreactor. New Biotechnol 37:117–122CrossRefGoogle Scholar
  52. Hänggi U (1990) Pilot scale production of PHB with Alcaligenes latus. In: Dawes E (ed) Novel biodegradable microbial polymers. Springer, Netherlands, pp 65–70CrossRefGoogle Scholar
  53. Heinrich D, Madkour MH, Al-Ghamdi MA, Shabbaj II, Steinbüchel A (2012) Large scale extraction of poly (3-hydroxybutyrate) from Ralstonia eutropha H16 using sodium hypochlorite. AMB Express 2(1):59PubMedPubMedCentralCrossRefGoogle Scholar
  54. Hermann-Krauss C, Koller M, Muhr A, Fasl H, Stelzer F, Braunegg G (2013) Archaeal production of polyhydroxyalkanoate (PHA) co-and terpolyesters from biodiesel industry-derived by-products. ArchaeaGoogle Scholar
  55. Herrema M, Kimmel K (2012) Method for producing polyhydroxyalkanoic acid. US Patent 8,263,373Google Scholar
  56. Horvat P, Špoljarić IV, Lopar M, Atlić A, Koller M, Braunegg G (2013) Mathematical modelling and process optimization of a continuous 5-stage bioreactor cascade for production of poly [-(R)-3-hydroxybutyrate] by Cupriavidus necator. Bioproc Biosyst Eng 36(9):1235–1250CrossRefGoogle Scholar
  57. Huschner F, Grousseau E, Brigham CJ, Plassmeier J, Popovic M, Rha C, Sinskey AJ (2015) Development of a feeding strategy for high cell and PHA density fed-batch fermentation of Ralstonia eutropha H16 from organic acids and their salts. Process Biochem 50:165–172CrossRefGoogle Scholar
  58. Ibrahim MHA, Steinbüchel A (2010) High-cell-density cyclic fed-batch fermentation of a Poly(3-Hydroxybutyrate)-accumulating thermophile, Chelatococcus sp. Strain MW10. Appl Environ Microbiol 76(23):7890–7895PubMedPubMedCentralCrossRefGoogle Scholar
  59. Ienczak J, Quines L, Melo AD, Brandellero M, Mendes C, Schmidell W, Aragão G (2011) High cell density strategy for poly (3-hydroxybutyrate) production by Cupriavidus necator. Braz J Chem Eng 28(4):585–596CrossRefGoogle Scholar
  60. Ienczak JL, Schmidell W, De Aragão GMF (2013) High-cell-density culture strategies for polyhydroxyalkanoate production: a review. J Ind Microbiol Biotechnol 40:275–286PubMedPubMedCentralCrossRefGoogle Scholar
  61. Israni N, Thapa S, Shivakumar S (2018) Biolytic extraction of poly (3-hydroxybutyrate) from Bacillus megaterium Ti3 using the lytic enzyme of Streptomyces albus Tia1. J Genet Eng Biotechnol 16(2):265–271PubMedPubMedCentralCrossRefGoogle Scholar
  62. Jacquel N, Lo C-W, Wei Y-H, Wu H-S, Wang SS (2008) Isolation and purification of bacterial poly(3-hydroxyalkanoates) Biochem Eng J 39(1):15–27CrossRefGoogle Scholar
  63. Jia Q, Xiong H, Wang H, Shi H, Sheng X, Sun R, Chen G (2014) Production of polyhydroxyalkanoates (PHA) by bacterial consortium from excess sludge fermentation liquid at laboratory and pilot scales. Bioresour Technol 171:159–167PubMedCrossRefPubMedCentralGoogle Scholar
  64. Jiang X, Ramsay JA, Ramsay BA (2006) Acetone extraction of mcl-PHA from Pseudomonas putida KT2440. J Microbiol Methods 67(2):212–219PubMedCrossRefPubMedCentralGoogle Scholar
  65. Jiang XR, Wang H, Shen R, Chen GQ (2015) Engineering the bacterial shapes for enhanced inclusion bodies accumulation. Metab Eng 29:227–237PubMedCrossRefPubMedCentralGoogle Scholar
  66. Jiang XR, Yao ZH, Chen GQ (2017) Controlling cell volume for efficient PHB production by Halomonas. Metab Eng 44:30–37PubMedCrossRefPubMedCentralGoogle Scholar
  67. Jiang G, Johnston B, Townrow D, Radecka I, Koller M, Chaber P, Adamus G, Kowalczuk M (2018) Biomass extraction using non-chlorinated solvents for biocompatibility improvement of polyhydroxyalkanoates. Polymers 10(7):731PubMedCentralCrossRefGoogle Scholar
  68. Johnson K, Jiang Y, Kleerebezem R, Muyzer G, van Loosdrecht MC (2009) Enrichment of a mixed bacterial culture with a high polyhydroxyalkanoate storage capacity. Biomacromol 10:670–676CrossRefGoogle Scholar
  69. Jung K, Hazenberg W, Prieto M, Witholt B (2001) Two-stage continuous process development for the production of medium-chain-length poly(3-hydroxyalkanoates). Biotechnol Bioeng 72:19–24PubMedCrossRefPubMedCentralGoogle Scholar
  70. Jung IL, Phyo KH, Kim KC, Park HK, Kim IG (2005) Spontaneous liberation of intracellular polyhydroxybutyrate granules in Escherichia coli. Res Microbiol 156(8):865–873PubMedCrossRefPubMedCentralGoogle Scholar
  71. Kachrimanidou V, Kopsahelis N, Papanikolaou S, Kookos IK, De Bruyn M, Clark JH, Koutinas AA (2014) Sunflower-based biorefinery: Poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production from crude glycerol, sunflower meal and levulinic acid. Bioresour Technol 172:121–130PubMedCrossRefPubMedCentralGoogle Scholar
  72. Kachrimanidou V, Kopsahelis N, Vlysidis A, Papanikolaou S, Kookos IK, Martínez BM, Rondán MCE, Koutinas AA (2016) Downstream separation of poly(hydroxyalkanoates) using crude enzyme consortia produced via solid state fermentation integrated in a biorefinery concept. Food Bioprod Process 100:323–334CrossRefGoogle Scholar
  73. Khanna S, Srivastava AK (2006) Computer simulated fed-batch cultivation for over production of PHB: a comparison of simultaneous and alternate feeding of carbon and nitrogen. Biochem Eng J 27(3):197–203CrossRefGoogle Scholar
  74. Khanna S, Srivastava AK (2008) Continuous production of poly-β-hydroxybutyrate by high-cell-density cultivation of Wautersia eutropha. J Chem Technol Biotechnol 83(6):799–805CrossRefGoogle Scholar
  75. Kim BS, Lee SC, Lee SY, Chang HN, Chang YK, Woo SI (1994) Production of poly(3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control. Biotechnol Bioeng 43(9):892–898PubMedCrossRefGoogle Scholar
  76. Kim M, Cho K-S, Ryu HW, Lee EG, Chang YK (2003) Recovery of poly (3-hydroxybutyrate) from high cell density culture of Ralstonia eutropha by direct addition of sodium dodecyl sulfate. Biotech Lett 25(1):55–59CrossRefGoogle Scholar
  77. Koller M, Maršálek L, de Sousa DMM, Braunegg G (2016) Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol 37:24–38CrossRefGoogle Scholar
  78. Koller M, Vadija D, Braunegg G, Atlić A, Horvat P (2017) Formal-and high-structured kinetic process modelling and footprint area analysis of binary imaged cells: tools to understand and optimize multistage-continuous PHA biosynthesis. Euro Biotech J 1(3):1–9Google Scholar
  79. Kourmentza C, Ntaikou I, Lyberatos G, Kornaros M (2015) Polyhydroxyalkanoates from Pseudomonas sp. using synthetic and olive mill wastewater under limiting conditions. Int J Biol Macromol 74:202–210PubMedCrossRefPubMedCentralGoogle Scholar
  80. Kourmentza C, Plácido J, Venetsaneas N, Burniol-Figols A, Varrone C, Gavala HN, Reis MA (2017) Recent advances and challenges towards sustainable Polyhydroxyalkanoate (PHA) production. Bioeng 4(2):1–43PubMedCentralCrossRefGoogle Scholar
  81. Kumar P, Kim BS (2019) Paracoccus sp. Strain LL1 as a single cell factory for the conversion of waste cooking oil to polyhydroxyalkanoates and carotenoids. Appl Food Biotechnol 6(1):53–60Google Scholar
  82. Kunasundari B, Sudesh K (2011) Isolation and recovery of microbial polyhydroxyalkanoates. Express Polym Lett 5(7):620–634CrossRefGoogle Scholar
  83. Lakshman K, Shamala TR (2006) Extraction of polyhydroxyalkanoate from Sinorhizobium meliloti cells using Microbispora sp. culture and its enzymes. Enzyme Microbial Technol 39(7):1471–1475CrossRefGoogle Scholar
  84. Lam W, Wang Y, Chan PL, Chan SW, Tsang YF, Chua H, Yu PHF (2017) Production of polyhydroxyalkanoates (PHA) using sludge from different wastewater treatment processes and the potential for medical and pharmaceutical applications. Environ Technol 38(13–14): 1779–1791PubMedCrossRefPubMedCentralGoogle Scholar
  85. Leong YK, Show PL, Ooi CW, Ling TC, Lan JCW (2014) Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: Insights from the recombinant Escherichia coli. J Biotechnol 180:52–65PubMedCrossRefPubMedCentralGoogle Scholar
  86. Leong YK, Lan JCW, Loh HS, Ling TC, Ooi CW, Show PL (2017) Cloud-point extraction of green-polymers from Cupriavidus necator lysate using thermoseparating-based aqueous two-phase extraction. J Biosci Bioeng 123:370–375PubMedCrossRefPubMedCentralGoogle Scholar
  87. Leong Y, Chang CK, Arumugasamy S, Lan J, Loh HS, Muhammad D, Show P (2018) Statistical design of experimental and bootstrap neural network modelling approach for thermo separating aqueous two-phase extraction of polyhydroxyalkanoates. Polymers 10(2):132PubMedCentralCrossRefGoogle Scholar
  88. Li ZJ, Shi ZY, Jian J, Guo YY, Wu Q, Chen GQ (2010) Production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) from unrelated carbon sources by metabolically engineered Escherichia coli. Metab Eng 12(4):352–359PubMedCrossRefPubMedCentralGoogle Scholar
  89. Li S, Cai L, Wu L, Zeng G, Chen J, Wu Q, Chen GQ (2014) Microbial synthesis of functional homo-, random, and block polyhydroxyalkanoates by β-oxidation deleted Pseudomonas entomophila. Biomacromol 15:2310–2319CrossRefGoogle Scholar
  90. Li T, Ye J, Shen R, Zong Y, Zhao X, Lou C, Chen GQ (2016) Semirational approach for ultrahigh Poly(3-hydroxybutyrate) accumulation in Escherichia coli by combining one-step library construction and high-throughput screening. ACS Synth Biol 5:1308–1317PubMedCrossRefPubMedCentralGoogle Scholar
  91. Liu S, Abrahamson LP, Scott GM (2012) Biorefinery: ensuring biomass as a sustainable renewable source of chemicals, materials, and energy. Biomass Bioenergy 39:1–4CrossRefGoogle Scholar
  92. Loo CY, Sudesh K (2007) Polyhydroxyalkanoates: bio-based microbial plastics and their properties. Malays Polym J 2:31–57Google Scholar
  93. López-Abelairas M, García-Torreiro M, Lú-Chau T, Lema JM, Steinbüchel A (2015) Comparison of several methods for the separation of poly (3-hydroxybutyrate) from Cupriavidus necator H16 cultures. Biochem Eng J 93:250–259CrossRefGoogle Scholar
  94. Madkour MH, Heinrich D, Alghamdi MA, Shabbaj II, Steinbüchel A (2013) PHA recovery from biomass. Biomacromol 14:2963–2972CrossRefGoogle Scholar
  95. Mannina G, Presti D, Montiel-Jarillo G, Suárez-Ojeda ME (2019) Bioplastic recovery from wastewater: a new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures. Bioresour Technol 282:361–369PubMedCrossRefPubMedCentralGoogle Scholar
  96. Martinez GA, Bertin L, Scoma A, Rebecchi S, Braunegg G, Fava F (2015) Production of polyhydroxyalkanoates from dephenolised and fermented olive mill wastewaters by employing a pure culture of Cupriavidus necator. Biochem Eng J 97:92–100CrossRefGoogle Scholar
  97. Martínez V, García P, García JL, Prieto MA (2011) Controlled autolysis facilitates the polyhydroxyalkanoate recovery in Pseudomonas putida KT2440. Microb Biotechnol 4:533–547PubMedPubMedCentralCrossRefGoogle Scholar
  98. Martínez V, Jurkevitch E, García JL, Prieto MA (2013) Reward for Bdellovibrio bacteriovorus for preying on a polyhydroxyalkanoate producer. Environ Microbiol 15:1204–1215PubMedCrossRefPubMedCentralGoogle Scholar
  99. Martínez V, Herencias C, Jurkevitch E, Prieto MA (2016) Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery: the case of the polyhydroxyalkanoates. Sci Rep 6:24381PubMedPubMedCentralCrossRefGoogle Scholar
  100. Martino L, Cruz MV, Scoma A, Freitas F, Bertin L, Scandola M, Reis MA (2014) Recovery of amorphous polyhydroxybutyrate granules from Cupriavidus necator cells grown on used cooking oil. Int J Biol Macromol 71:117–123PubMedCrossRefPubMedCentralGoogle Scholar
  101. Mohammadi M, Hassan MA, Phang LY, Ariffin H, Shirai Y, Ando Y (2012) Recovery and purification of intracellular polyhydroxyalkanoates from recombinant Cupriavidus necator using water and ethanol. Biotechnol Lett 34(2):253–259PubMedCrossRefPubMedCentralGoogle Scholar
  102. Moita R, Lemos PC (2012) Biopolymers production from mixed cultures and pyrolysis by-products. J Biotechnol 157(4):578–583PubMedCrossRefPubMedCentralGoogle Scholar
  103. Moralejo-Gárate H, Kleerebezem R, Mosquera-Corral A, van Loosdrecht MCM (2011) Microbial community engineering for biopolymer production from glycerol. Appl Microbiol Biotechnol 92:631–639PubMedCrossRefPubMedCentralGoogle Scholar
  104. Moralejo-Gárate H, Kleerebezem R, Mosquera-Corral A, van Loosdrecht MCM (2013) Impact of oxygen limitation on glycerol-based biopolymer production by bacterial enrichments. Water Res 47(3):1209–1217PubMedCrossRefPubMedCentralGoogle Scholar
  105. Morgan-Sagastume F, Hjort M, Cirne D, Gérardin F, Lacroix S, Gaval G, Karabegovic L, Alexandersson T, Johansson P, Karlsson A, Bengtsson S (2015) Integrated production of polyhydroxyalkanoates (PHAs) with municipal wastewater and sludge treatment at pilot scale. Biores Technol 181:78–89CrossRefGoogle Scholar
  106. Mozumder MSI, De Wever H, Volcke EI Garcia-Gonzalez L (2014) A robust fed-batch feeding strategy independent of the carbon source for optimal polyhydroxybutyrate production. Process Biochem 49(3):365–373CrossRefGoogle Scholar
  107. Murugan P, Han L, Gan CY, Maurer FH, Sudesh K (2016) A new biological recovery approach for PHA using mealworm, Tenebrio molitor. J Biotechnol 239:98–105PubMedCrossRefPubMedCentralGoogle Scholar
  108. Myung J, Flanagan JC, Waymouth RM, Criddle CS (2017) Expanding the range of polyhydroxyalkanoates synthesized by methanotrophic bacteria through the utilization of omega-hydroxyalkanoate co-substrates. AMB Express 7(118):1–10Google Scholar
  109. Narayanan A, Kumar VS, Ramana KV (2014) Production and characterization of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) from Bacillus mycoides DFC1 using rice husk hydrolyzate. Waste Biomass Valorization 5(1):109–118CrossRefGoogle Scholar
  110. Nikel PI, De Almeida A, Melillo EC, Galvagno MA, Pettinari MJ (2006) New recombinant Escherichia coli strain tailored for the production of poly(3-hydroxybutyrate) from agroindustrial by-products. Appl Environ Microbiol 72(6):3949–3954PubMedPubMedCentralCrossRefGoogle Scholar
  111. Ntaikou I, Peroni CV, Kourmentza C, Ilieva VI, Morelli A, Chiellini E, Lyberatos G (2014) Microbial bio-based plastics from olive-mill wastewater: generation and properties of polyhydroxyalkanoates from mixed cultures in a two-stage pilot scale system. J Biotechnol 188:138–147PubMedCrossRefPubMedCentralGoogle Scholar
  112. Obruca S, Marova I, Snajdar O, Mravcova L, Svoboda Z (2010) Production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus necator from waste rapeseed oil using propanol as a precursor of 3-hydroxyvalerate. Biotechnol Lett 32(12):1925–1932PubMedCrossRefPubMedCentralGoogle Scholar
  113. Obruca S, Marova I, Melusova S, Mravcova L (2011) Production of polyhydroxyalkanoates from cheese whey employing Bacillus megaterium CCM 2037. Ann Microbiol 61(4):947–953CrossRefGoogle Scholar
  114. Obruca S, Benesova P, Marsalek L, Marova I (2015) Use of lignocellulosic materials for PHA production. Chem Biochem Eng Q 29:135–144CrossRefGoogle Scholar
  115. Oh YH, Lee SH, Jang YA, Choi JW, Hong KS, Yu JH, Shin J, Song BK, Mastan SG, David Y, Baylon MG (2015) Development of rice bran treatment process and its use for the synthesis of polyhydroxyalkanoates from rice bran hydrolysate solution. Bioresour Technol 181:283–290PubMedCrossRefPubMedCentralGoogle Scholar
  116. Oliveira CS, Silva CE, Carvalho G, Reis MA (2016) Strategies for efficiently selecting PHA producing mixed microbial cultures using complex feedstocks: feast and famine regime and uncoupled carbon and nitrogen availabilities. New Biotechnol 37:69–79CrossRefGoogle Scholar
  117. Ong SY, Zainab-L I, Pyary S, Sudesh K (2018) A novel biological recovery approach for PHA employing selective digestion of bacterial biomass in animals. Appl Microbiol Biotechnol 102(5):2117–2127PubMedCrossRefPubMedCentralGoogle Scholar
  118. Pais J, Serafim LS, Freitas F, Reis MA (2016) Conversion of cheese whey into poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Haloferax mediterranei. New Biotechnol 33(1):224–230CrossRefGoogle Scholar
  119. Penloglou G, Chatzidoukas C, Kiparissides C (2012) Microbial production of polyhydroxybutyrate with tailor-made properties: an integrated modelling approach and experimental validation. Biotechnol Adv 30(1):329–337PubMedPubMedCentralCrossRefGoogle Scholar
  120. Pfeiffer D, Jendrossek D (2012) Localization of poly(3-Hydroxybutyrate) (PHB) granule-associated proteins during PHB granule formation and identification of two new phasins, phap6 and phap7, in Ralstonia eutropha H16. J Bacteriol 194:5909–5921PubMedPubMedCentralCrossRefGoogle Scholar
  121. Phithakrotchanakoon C, Champreda V, Aiba SI, Pootanakit K, Tanapongpipat S (2015) Production of polyhydroxyalkanoates from crude glycerol using recombinant Escherichia coli. J Polym Environ 23(1):38–44CrossRefGoogle Scholar
  122. Porras MA, Ramos FD, Diaz MS, Cubitto MA, Villar MA (2019) Modeling the bioconversion of starch to P (HB-co-HV) optimized by experimental design using Bacillus megaterium BBST4 strain. Environ Technol 40(9):1185–1202PubMedCrossRefPubMedCentralGoogle Scholar
  123. Rahman A, Linton E, Hatch AD, Sims RC, Miller CD (2013) Secretion of polyhydroxybutyrate in Escherichia coli using a synthetic biological engineering approach. J Biol Eng 7(24):1–9Google Scholar
  124. Ramachandran H, Amirul AA (2013) Yellow-pigmented Cupriavidus sp., a novel bacterium capable of utilizing glycerine pitch for the sustainable production of P(3HB-co-4HB). J Chem Technol Biotechnol 88(6):1030–1038CrossRefGoogle Scholar
  125. Ramsay BA, Lomaliza K, Chavarie C, Dube B, Bataille P, Ramsay JA (1990) Production of poly-(beta-hydroxybutyric-co-beta-hydroxyvaleric) acids. Appl Environ Microbiol 56(7):2093–2098PubMedPubMedCentralGoogle Scholar
  126. Rao U, Sridhar R, Sehgal PK (2010) Biosynthesis and biocompatibility of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) produced by Cupriavidus necator from spent palm oil. Biochem Eng J 49(1):13–20CrossRefGoogle Scholar
  127. Rathika R, Janaki V, Shanthi K, Kamala-Kannan S (2018) Bioconversion of agro-industrial effluents for polyhydroxyalkanoates production using Bacillus subtilis RS1. Int J Environ Sci Technol. Scholar
  128. Reddy C, Ghai R, Kalia VC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87(2):137–146PubMedCrossRefPubMedCentralGoogle Scholar
  129. Reddy MV, Mawatari Y, Yajima Y, Satoh K, Mohan SV, Chang YC (2016) Production of poly-3-hydroxybutyrate (P3HB) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) P (3HB-co-3HV) from synthetic wastewater using Hydrogenophaga palleronii. Bioresour Technol 215:155–162CrossRefGoogle Scholar
  130. Ren Y, Ling C, Hajnal I, Wu Q, Chen GQ (2018) Construction of Halomonas bluephagenesis capable of high cell density growth for efficient PHA production. Appl Microbiol Biotechnol 102(10):4499–4510PubMedCrossRefPubMedCentralGoogle Scholar
  131. Riedel SL, Brigham CJ, Budde CF, Bader J, Rha C, Stahl U, Sinskey AJ (2013) Recovery of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) from Ralstonia eutropha cultures with non-halogenated solvents. Biotechnol Bioeng 110(2):461–470PubMedCrossRefPubMedCentralGoogle Scholar
  132. Ryu HW, Cho KS, Lee EG, Chang YK (2000) Recovery of Poly (3-hydroxybutyrate) from coagulated Ralstonia eutropha using a chemical digestion method. Biotechnol Prog 16(4):676–679PubMedCrossRefPubMedCentralGoogle Scholar
  133. Salakkam A, Webb C (2018) Production of poly (3-hydroxybutyrate) from a complete feedstock derived from biodiesel by-products (crude glycerol and rapeseed meal). Biochem Eng J 137:358–364CrossRefGoogle Scholar
  134. Salgaonkar BB, Mani K, Bragança JM (2019) Sustainable bioconversion of cassava waste to poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Halogeometricum borinquense Strain E3. J Polym Environ 27(2):299–308CrossRefGoogle Scholar
  135. Schroll G, Resch S, Gruber K, Wanner G, Lubitz W (1998) Heterologous ΦX174 gene E-expression in Ralstonia eutropha: E-mediated lysis is not restricted to γ-subclass of proteobacteria. J Biotechnol 66(2–3):211–217PubMedCrossRefPubMedCentralGoogle Scholar
  136. Serafim LS, Lemos PC, Oliveira RF, Reis MAM (2004) Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions. Biotechnol Bioeng 87:145–160PubMedCrossRefPubMedCentralGoogle Scholar
  137. Shang L, Fan DD, Kim MI, Chang HN (2007) Modeling of poly (3-hydroxybutyrate) production by high cell density fed-batch culture of Ralstonia eutropha. Biotechnol Bioproc Eng 12(4):417–423CrossRefGoogle Scholar
  138. Shasaltaneh MD, Moosavi-Nejad Z, Gharavi S, Fooladi J (2013) Cane molasses as a source of precursors in the bioproduction of tryptophan by Bacillus subtilis. Iran J Microbiol 5:285–292PubMedPubMedCentralGoogle Scholar
  139. Solaiman DK, Ashby RD, Hotchkiss JAT, Foglia TA (2006) Biosynthesis of medium-chain-length poly (hydroxyalkanoates) from soy molasses. Biotechnol Lett 28(3):157–162PubMedCrossRefPubMedCentralGoogle Scholar
  140. Špoljarić IV, Lopar M, Koller M, Muhr A, Salerno A, Reiterer A, Malli K, Angerer H, Strohmeier K, Schober S, Mittelbach M (2013) Mathematical modeling of poly [(R)-3-hydroxyalkanoate] synthesis by Cupriavidus necator DSM 545 on substrates stemming from biodiesel production. Bioresour Technol 133:482–494PubMedCrossRefPubMedCentralGoogle Scholar
  141. Stanley A, Kumar HP, Mutturi S, Vijayendra SN (2017) Fed-batch strategies for production of PHA using a native isolate of Halomonas venusta KT832796 Strain. Appl Biochem Biotechnol. Scholar
  142. Tamis J, Lužkov K, Jiang Y, van Loosdrecht MC, Kleerebezem R (2014) Enrichment of Plasticicumulans acidivorans at pilot-scale for PHA production on industrial wastewater. J Biotechnol 192:161–169CrossRefGoogle Scholar
  143. Tan D, Xue YS, Aibaidula G, Chen GQ (2011) Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01. Biores Technol 102(17):8130–8136CrossRefGoogle Scholar
  144. Tao W, Lv L, Chen GQ (2017) Engineering Halomonas species TD01 for enhanced polyhydroxyalkanoates synthesis via CRISPRi. Microb Cell Fact 16(1):48PubMedPubMedCentralCrossRefGoogle Scholar
  145. Tripathi L, Wu LP, Chen J, Chen GQ (2012) Synthesis of diblock copolymer poly-3-hydroxybutyrate-block-poly-3-hydroxyhexanoate [PHB-b-PHHx] by a β-oxidation weakened Pseudomonas putida KT2442. Microb Cell Fact 11(44):1–11Google Scholar
  146. Tripathi L, Wu LP, Dechuan M, Chen J, Wu Q, Chen GQ (2013) Pseudomonas putida KT2442 as a platform for the biosynthesis of polyhydroxyalkanoates with adjustable monomer contents and compositions. Bioresour Technol 142:225–231PubMedCrossRefPubMedCentralGoogle Scholar
  147. Vadija D, Koller M, Novak M, Braunegg G, Horvat P (2016) Footprint area analysis of binary imaged Cupriavidus necator cells to study PHB production at balanced, transient, and limited growth conditions in a cascade process. Appl Microbiol Biotechnol 100(23):10065–10080CrossRefGoogle Scholar
  148. Valentino F, Morgan-Sagastume F, Campanari S, Villano M, Werker A, Majone M (2017) Carbon recovery from wastewater through bioconversion into biodegradable polymers. New Biotechnol 37:9–23CrossRefGoogle Scholar
  149. van Hee P, Elumbaring AC, van der Lans RG, Van der Wielen LA (2006) Selective recovery of polyhydroxyalkanoate inclusion bodies from fermentation broth by dissolved-air flotation. J Colloid Interface Sci 297(2):595–606PubMedCrossRefPubMedCentralGoogle Scholar
  150. Van Loosdrecht MCM, Pot MA, Heijnen JJ (1997) Importance of bacterial storage polymers in bioprocesses. Water Sci Technol 35:41–47CrossRefGoogle Scholar
  151. Verlinden RA, Hill DJ, Kenward MA, Williams CD, Piotrowska-Seget Z, Radecka IK (2011) Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator. AMB Express 1(1):1–8CrossRefGoogle Scholar
  152. Villano M, Valentino F, Barbetta A, Martino L, Scandola M, Majone M (2014) Polyhydroxyalkanoates production with mixed microbial cultures: from culture selection to polymer recovery in a high-rate continuous process. New Biotechnol 31:289–296CrossRefGoogle Scholar
  153. Volova TG, Kiselev EG, Shishatskaya EI, Zhila NO, Boyandin AN, Syrvacheva DA, Vinogradova ON, Kalacheva GS, Vasiliev AD, Peterson IV (2013) Cell growth and accumulation of polyhydroxyalkanoates from CO2 and H2 of a hydrogen-oxidizing bacterium, Cupriavidus eutrophus B-10646. Biores Technol 146:215–222CrossRefGoogle Scholar
  154. Wang Y, Yin J, Chen GQ (2014) Polyhydroxyalkanoates, challenges and opportunities. Curr Opin Biotechnol 30:59–65PubMedPubMedCentralCrossRefGoogle Scholar
  155. Wang Y, Chung A, Chen GQ (2017) Synthesis of medium-chain-length polyhydroxyalkanoate homopolymers, random copolymers, and block copolymers by an engineered strain of Pseudomonas entomophila. Adv Healthc Mater 6(7):1601017CrossRefGoogle Scholar
  156. Wei XX, Shi ZY, Yuan MQ, Chen GQ (2009) Effect of anaerobic promoters on the microaerobic production of polyhydroxybutyrate (PHB) in recombinant Escherichia coli. Appl Microbiol Biotechnol 82(4):703–712PubMedCrossRefGoogle Scholar
  157. Xu J, Guo B, Zhang Z, Wu Q, Zhou Q, Chen J, Chen G, Li G (2005) A mathematical model for regulating monomer composition of the microbially synthesized polyhydroxyalkanoate copolymers. Biotechnol Bioeng 90(7):821–829PubMedCrossRefGoogle Scholar
  158. Yang YH, Brigham C, Willis L, Rha C, Sinskey A (2011) Improved detergent-based recovery of polyhydroxyalkanoates (PHAs). Biotechnol Lett 33(5):937–942PubMedCrossRefGoogle Scholar
  159. Bhatia SK, Gurav R, Choi TR, Jung HR, Yang SY, Song HS, Jeon JM, Kim JS, Lee YK, Yang, YH (2019) Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) production from engineered Ralstonia eutropha using synthetic and anaerobically digested food waste derived volatile fatty acids. Int J Biol MacromolGoogle Scholar
  160. Ye J, Huang W, Wang D, Chen F, Yin J, Li T, Zhang H, Chen GQ (2018) Pilot scale-up of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) production by halomonas bluephagenesis via cell growth adapted optimization process. Biotechnol J 13(5):1800074CrossRefGoogle Scholar
  161. Yeh CY, Lan JCW (2014) Direct recovery of polyhydroxyalkanoates synthase from recombinant Escherichia coli feedstock by using aqueous two-phase systems. J Taiwan Inst Chem Eng 45(4):1119–1125CrossRefGoogle Scholar
  162. Yu PH, Chua H, Huang AL, Ho KP (1999) Conversion of industrial food wastes by Alcaligenes latus into polyhydroxyalkanoates. Appl Biochem Biotechnol 78(1–3):445–454CrossRefGoogle Scholar
  163. Yue H, Ling C, Yang T, Chen X, Chen Y, Deng H, Wu Q, Chen J, Chen GQ (2014) A seawater-based open and continuous process for polyhydroxyalkanoates production by recombinant Halomonas campaniensis LS21 grown in mixed substrates. Biotechnol Biofuels 7(108):1–12Google Scholar
  164. Zafar M, Kumar S, Kumar S, Dhiman AK (2012a) Optimization of polyhydroxybutyrate (PHB) production by Azohydromonas lata MTCC 2311 by using genetic algorithm based on artificial neural network and response surface methodology. Biocatal Agr Biotechnol 1(1):70–79CrossRefGoogle Scholar
  165. Zafar M, Kumar S, Kumar S, Dhiman AK (2012b) Artificial intelligence based modeling and optimization of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) production process by using Azohydromonas lata MTCC 2311 from cane molasses supplemented with volatile fatty acids: A genetic algorithm paradigm. Bioresour Technol 104:631–641PubMedPubMedCentralCrossRefGoogle Scholar
  166. Zafar M, Kumar S, Kumar S, Dhiman AK (2012c) Modeling and optimization of poly (3hydroxybutyrate-co-3hydroxyvalerate) production from cane molasses by Azohydromonas lata MTCC 2311 in a stirred-tank reactor: effect of agitation and aeration regimes. J Ind Microbiol Biotechnol 39(7):987–1001PubMedPubMedCentralCrossRefGoogle Scholar
  167. Zúñiga C, Morales M, Le Borgne S, Revah S (2011) Production of poly-β-hydroxybutyrate (PHB) by Methylobacterium organophilum isolated from a methanotrophic consortium in a two-phase partition bioreactor. J Hazard Mater 190:876–882PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MicrobiologyPanjab UniversityChandigarhIndia

Personalised recommendations