Introduction and Background

  • Geeta GahlawatEmail author
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


The usage of synthetic plastics such as polyethylene and polypropylene was initiated by mankind to enhance the quality and comfort of life without realizing their ubiquitous nature. Now they have become an essential part of contemporary life and are being used increasingly in different industrial applications due to their unique characteristics of strength, durability and resistance to chemicals. The high molecular weight appears to be the main reason for the resistance of these plastics to biodegradation and perseverance in soil for a longer period of time. This non-biodegradable nature of synthetic plastics and dependency on fossil fuels for their production have driven the search for alternative sustainable biotechnological solution with lower environmental impact. In this regard, Polyhydroxyalkanoates (PHAs) are considered as best alternatives as they are produced by fermentation of renewable feedstock and are completely biodegradable. However, despite the considerable research work on PHAs, only limited success has been achieved so far. The main bottleneck in successful utilization of PHAs is their high cost of production. This book chapter presents general introduction on PHAs and their types, and how they came into existence.


Synthetic plastics Polyhydroxyalkanoates Sustainability Renewable substrates Classification Copolymers 


  1. Akaraonye E, Keshavarz T, Roy I (2010) Production of polyhydroxyalkanoates: the future green materials of choice. J Chem Technol Biotechnol 85(6):732–743Google Scholar
  2. Alsafadi D, Al-Mashaqbeh O (2017) A one-stage cultivation process for the production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) from olive mill wastewater by Haloferax mediterranei. New Biotechnol 34:47–53Google Scholar
  3. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54(4):450–472Google Scholar
  4. Burdon KL, Stokes JC, Kimbrough CE (1942) Studies of the common aerobic spore-forming bacilli: I. Staining for fat with Sudan black B-safranin. J Bacteriol 43(6):717Google Scholar
  5. Byrom D (1987) Polymer synthesis by microorganisms: technology and economics. Trends Biotechnol 5(9):246–250CrossRefGoogle Scholar
  6. Cavalheiro JMBT, de Almeida MCMD, Grandfils C, da Fonseca MMR (2009) Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem 44(5):509–515CrossRefGoogle Scholar
  7. Cavalheiro JMBT et al (2012) Effect of cultivation parameters on the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) by Cupriavidus necator using waste glycerol. Bioresour Technol 111:391–397PubMedPubMedCentralCrossRefGoogle Scholar
  8. De Smet M et al (1983) Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. J Bacteriol 154(2):870–878PubMedPubMedCentralGoogle Scholar
  9. Divya G, Archana T, Manzano RA (2013) Polyhydroxy alkonates—a sustainable alternative to petro-based plastics. J Petrol Environ Biotechnol 4:1–8CrossRefGoogle Scholar
  10. Doi Y (1990) Microbial polyesters. VCH Publishers, New YorkGoogle Scholar
  11. Doi Y, Kitamura S, Abe H (1995) Microbial synthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28(14):4822–4828CrossRefGoogle Scholar
  12. Ebnesajjad S (2012) Plastic films in food packaging: materials, technology and applications. Elsevier William Andrew Publishers, OxfordGoogle Scholar
  13. Findlay RH, White DC (1983) Polymeric beta-hydroxyalkanoates from environmental samples and Bacillus megaterium. Appl Environ Microbiol 45(1):71–78PubMedPubMedCentralGoogle Scholar
  14. Forsyth W, Hayward A, Roberts J (1958) Occurrence of poly-β-hydroxybutyric acid in aerobic gram-negative bacteria. Nature 182(4638):800–801PubMedCrossRefPubMedCentralGoogle Scholar
  15. Fukui T, Doi Y (1997) Cloning and analysis of the poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) biosynthesis genes of Aeromonas caviae. J Bacteriol 179(15):4821–4830PubMedPubMedCentralCrossRefGoogle Scholar
  16. Fukui T, Shiomi N, Doi Y (1998) Expression and characterization of (R)-specific enoyl coenzyme a hydratase involved in polyhydroxyalkanoate biosynthesis by Aeromonas caviae. J Bacteriol 180(3):667–673Google Scholar
  17. Fukui T, Yokomizo S, Kobayashi G (1999) Co-expression of polyhydroxyalkanoate synthase and (R)‐enoyl‐CoA hydratase genes of Aeromonas caviae establishes copolyester biosynthesis pathway in escherichia coli. FEMS Microbiol Lett 170(1):69–75PubMedCrossRefPubMedCentralGoogle Scholar
  18. García IL et al (2013) Evaluation of by-products from the biodiesel industry as fermentation feedstock for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production by Cupriavidus necator. Bioresour Technol 130:16–22PubMedPubMedCentralCrossRefGoogle Scholar
  19. Genser KF, Renner G, Schwab H (1998) Molecular cloning, sequencing and expression in Escherichia coli of the poly(3-hydroxyalkanoate) synthesis genes from Alcaligenes latus DSM1124. J Biotechnol 64(2–3):123–135CrossRefGoogle Scholar
  20. Haywood GW, Anderson AJ, Ewing DF, Dawes EA (1990) Accumulation of a polyhydroxyalkanoate containing primarily 3-hydroxydecanoate from simple carbohydrate substrates by Pseudomonas sp. strain NCIMB 40135. Appl Environ Microbiol 56(11):3354–3359Google Scholar
  21. Hoffmann N, Steinbüchel A, Rehm BH (2000a) Homologous functional expression of cryptic phaG from Pseudomonas oleovorans establishes the transacylase-mediated polyhydroxyalkanoate biosynthetic pathway. Appl Microbiol Biotechnol 54(5):665–670PubMedCrossRefPubMedCentralGoogle Scholar
  22. Hoffmann N, Steinbüchel A, Rehm BH (2000b) The Pseudomonas aeruginosa phaG gene product is involved in the synthesis of polyhydroxyalkanoic acid consisting of medium-chain-length constituents from non-related carbon sources. FEMS Microbiol Lett 184(2):253–259PubMedCrossRefPubMedCentralGoogle Scholar
  23. Holmes P (1985) Applications of PHB-a microbially produced biodegradable thermoplastic. Phys Technol 16(1):32CrossRefGoogle Scholar
  24. Hrabak O (1992) Industrial production of poly-β-hydroxybutyrate. FEMS Microbiol Lett 103(2–4):251–255Google Scholar
  25. Huijberts G, de Rijk TC, de Waard P, Eggink G (1994) 13C nuclear magnetic resonance studies of Pseudomonas putida fatty acid metabolic routes involved in poly (3-hydroxyalkanoate) synthesis. J Bacteriol 176(6):1661–1666PubMedPubMedCentralCrossRefGoogle Scholar
  26. Huijberts G, Eggink G, De Waard P, Huisman GW, Witholt B (1992) Pseudomonas putida KT2442 cultivated on glucose accumulates poly (3-hydroxyalkanoates) consisting of saturated and unsaturated monomers. Appl Environ Microbiol 58(2):536–544Google Scholar
  27. Huisman GW, de Leeuw O, Eggink G, Witholt B (1989) Synthesis of poly-3-hydroxyalkanoates is a common feature of fluorescent pseudomonads. Appl Environ Microbiol 55(8):1949–1954Google Scholar
  28. Johnstone B (1990) A throw away answer. Far East Econ Rev 147:62–63Google Scholar
  29. Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40(2):607–619CrossRefGoogle Scholar
  30. Koller M, Maršálek L, de Sousa Dias MM, Braunegg G (2017) Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol 37:24–38CrossRefGoogle Scholar
  31. Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G and Witholt B (1988) Formation of Polyesters by Pseudomonas oleovorans: Effect of Substrates on Formation and Composition of Poly-(R)-3-Hydroxyalkanoates and Poly-(R)-3-Hydroxyalkenoates. Appl Environ Microbiol 54(12):2924–2932Google Scholar
  32. Lemoigne M (1926) Products of dehydration and of polymerization of β-hydroxybutyric acid. Bull Soc Chem Biol 8:770–782Google Scholar
  33. Lee SY, Lee Y, Wang F (1999) Chiral compounds from bacterial polyesters: sugars to plastics to fine chemicals. Biotechnol Bioeng 65(3):363–368PubMedCrossRefPubMedCentralGoogle Scholar
  34. Loo CY, Sudesh K (2007) Polyhydroxyalkanoates: bio-based microbial plastics and their properties. Malays Polym J 2(2):31–57Google Scholar
  35. Loo CY et al (2005) Biosynthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) from palm oil products in a Wautersia eutropha mutant. Biotechnol Lett 27(18):1405–1410PubMedCrossRefPubMedCentralGoogle Scholar
  36. Macrae R, Wilkinson J (1958) Poly-β-hyroxybutyrate metabolism in washed suspensions of Bacillus cereus and Bacillus megaterium. J Gen Appl Microbiol 19(1):210–222CrossRefGoogle Scholar
  37. Madison LL, Huisman GW (1999) Metabolic Engineering of Poly(3-Hydroxyalkanoates): From DNA to Plastic. Microbiol Mol Biol Rev 63(1):21–53Google Scholar
  38. Ostle AG, Holt J (1982) Nile blue A as a fluorescent stain for poly-beta-hydroxybutyrate. Appl Environ Microbiol 44(1):238–241PubMedPubMedCentralGoogle Scholar
  39. Page WJ, Knosp O (1989) Hyperproduction of poly-β-hydroxybutyrate during exponential growth of Azotobacter vinelandii UWD. Appl Environ Microbiol 55(6):1334–1339Google Scholar
  40. Panda B, Jain P, Sharma L, Mallick N (2006) Optimization of cultural and nutritional conditions for accumulation of poly-β-hydroxybutyrate in Synechocystis sp. PCC 6803. Bioresour Technol 97(11):1296–1301PubMedCrossRefGoogle Scholar
  41. Pedrós-Alió C, Mas J, Guerrero R (1985) The influence of poly-β-hydroxybutyrate accumulation on cell volume and buoyant density in Alcaligenes eutrophus. Arch Microbiol 143(2):178–184CrossRefGoogle Scholar
  42. Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82(3):233–247CrossRefGoogle Scholar
  43. Reddy MV et al (2016) Production of poly-3-hydroxybutyrate (P3HB) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) P (3HB-co-3HV) from synthetic wastewater using Hydrogenophaga palleronii. Bioresour Technol 215:155–162CrossRefGoogle Scholar
  44. Rehm BH, Krüger N, Steinbüchel A (1998) A New Metabolic Link between Fatty Acid de NovoSynthesis and Polyhydroxyalkanoic Acid Synthesis The PHAG Gene from Pseudomonas Putida kt2440 Encodes A 3-Hydroxyacyl-Acyl Carrier Protein-Coenzyme A Transferase. J Biol Chem 273(37):24044–24051Google Scholar
  45. Rehm BH, Mitsky TA and Steinbüchel A (2001) Role of Fatty Acid De Novo Biosynthesis in Polyhydroxyalkanoic Acid (PHA) and Rhamnolipid Synthesis by Pseudomonads: Establishment of the Transacylase (PhaG)-Mediated Pathway for PHA Biosynthesis in Escherichia coli. Appl Environ Microbiol 67(7):3102–3109PubMedPubMedCentralCrossRefGoogle Scholar
  46. Reinecke F, Steinbuechel A (2008) Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotecAdd hnological production of technically interesting biopolymers. J Mol Microbiol Biotechnol 16(1–2):91–108Google Scholar
  47. Senior P, Dawes E (1971) Poly-beta-hydroxybutyrate biosynthesis and the regulation of glucose metabolism in Azotobacter beijerinckii. Biochem J 125:55–66PubMedPubMedCentralCrossRefGoogle Scholar
  48. Singh AK, Mallick N (2008) Enhanced production of SCL-LCL-PHA co-polymer by sludge-isolated Pseudomonas aeruginosa MTCC 7925. Lett Appl Microbiol 46(3):350–357PubMedCrossRefPubMedCentralGoogle Scholar
  49. Slater S, Houmiel KL, Tran M, Mitsky TA, Taylor NB, Padgette SR, Gruys KJ (1998) Multiple β-ketothiolases mediate poly (β-hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha. J Bacteriol 180(8):1979–1987Google Scholar
  50. Steinbüchel A, Lütke-Eversloh T (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochemical Eng J 16(2):81–96CrossRefGoogle Scholar
  51. Sudesh K (2000) Molecular design and biosynthesis of biodegradable polyesters. Polym Adv Technol 11(8–12):865–872CrossRefGoogle Scholar
  52. Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Progress Polym Sci 25(10):1503–1555CrossRefGoogle Scholar
  53. Sudesh K, Doi Y (2005) Polyhydroxyalkanoates. Handbook of biodegradable polymers, pp 219–256Google Scholar
  54. Talsness CE, Andrade AJ, Kuriyama SN, Taylor JA, vom Saal FS (2009) Components of plastic: experimental studies in animals and relevance for human health. Philosophical Trans Royal Soc B: Biological Sci 364(1526):2079–2096CrossRefGoogle Scholar
  55. Thompson RC, Moore CJ, vom Saal FS, Swan SH (2009) Plastics, the environment and human health: current consensus and future trends. Philosophical Trans Royal Soc B: Biol Sci 364(1526):2153–2166CrossRefGoogle Scholar
  56. Timm A, Steinbüchel A (1990) Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl Environ Microbiol 56(11):3360–3367Google Scholar
  57. Tokiwa Y, Ugwu CU (2007) Biotechnological production of (R)-3-hydroxybutyric acid monomer. J Biotechnol 132(3):264–272PubMedCrossRefPubMedCentralGoogle Scholar
  58. Tsuge T (2002) Metabolic improvements and use of inexpensive carbon sources in microbial production of polyhydroxyalkanoates. J Biosci Bioeng 94(6):579–584PubMedCrossRefPubMedCentralGoogle Scholar
  59. Valentin H, Dennis D (1996) Metabolic pathway for poly (3-hydroxybutyrate-co-3-hydroxyvalerate) formation in Nocardia corallina: inactivation of mutB by chromosomal integration of a kanamycin resistance gene. Appl Environ Microbiol 62(2):372–379Google Scholar
  60. Van-Thuoc D, Huu-Phong T, Minh-Khuong D, Hatti-Kaul R (2015) Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) production by a moderate halophile Yangia sp. ND199 using glycerol as a carbon source. Appl Biochem Biotechnol 175(6):3120–3132PubMedCrossRefGoogle Scholar
  61. Verlinden RA et al (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102(6):1437–1449PubMedCrossRefGoogle Scholar
  62. Verlinden RA, Hill DJ, Kenward M, Williams CD, Radecka I (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102(6):1437–1449PubMedCrossRefPubMedCentralGoogle Scholar
  63. Wallen LL, Rohwedder WK (1974) Poly-β-hydroxyalkanoate from activated sludge. Environ Sci Technol 8(6):576–579CrossRefGoogle Scholar
  64. Wang Y, Bian YZ, Wu Q, Chen GQ (2008) Evaluation of three-dimensional scaffolds prepared from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials 29(19):2858–2868PubMedCrossRefPubMedCentralGoogle Scholar
  65. Wang Y et al (2013) Biosynthesis and thermal properties of PHBV produced from levulinic acid by Ralstonia eutropha. PLoS ONE 8(4):1–8CrossRefGoogle Scholar
  66. Wang Y, Yin J, Chen GQ (2014) Polyhydroxyalkanoates, challenges and opportunities. Curr Opin Biotechnol 30:59–65PubMedPubMedCentralCrossRefGoogle Scholar
  67. Williams SF, Martin DP (2002) Applications of PHAs in medicine and pharmacy. Biopolymers 4:91–127Google Scholar
  68. Williamson D, Wilkinson J (1958) The isolation and estimation of the poly-β-hydroxybutyrate inclusions of Bacillus Species. J Gen Appl Microbiol 19(1):198–209CrossRefGoogle Scholar
  69. Williams DR, Anderson AJ, Dawes EA, Ewing DF (1994) Production of a co-polyester of 3-hydroxybutyric acid and 3-hydroxyvaleric acid from succinic acid by Rhodococcus ruber: biosynthetic considerations. Appl Microbiol Biotechnol 40(5):717–723CrossRefGoogle Scholar
  70. Yu PH, Chua H, Huang AL, Ho KP (1999) Conversion of industrial food wastes by Alcaligenes latus into polyhydroxyalkanoates. Appl Biochem Biotechnol 78(1–3):445–454CrossRefGoogle Scholar
  71. Zhao K, Deng Y, Chun CJ, Chen GQ (2003) Polyhydroxyalkanoate (PHA) scaffolds with good mechanical properties and biocompatibility. Biomaterials 24(6):1041–1045PubMedCrossRefPubMedCentralGoogle Scholar
  72. Zinn M, Witholt B, Egli T (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev 53(1):5–21PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MicrobiologyPanjab UniversityChandigarhIndia

Personalised recommendations