Advertisement

A High Linearity Shunt Capacitive Feedback LNA for Wireless Applications

  • Gaurav Srivastava
  • Malti BansalEmail author
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 98)

Abstract

In this paper, CMOS LNA with low noise and high linearity with shunt capacitive and CS with inductive degenerate topology is presented. LNA is implemented in ADS on 0.18 µm TSMC technology. The LNA is designed for RF Front end so the important parameters are gain, linearity and noise figure. The circuit designed exhibits good I/P and O/P reflection coefficients with low power consumption which is crucial for LNA designing. The circuit attains S11 = −22.06 dB, S12 = −2.77 dB, S21 = 9.4 dB, and S22 = −104.85 dB and NF = 1.23 dB and IIP3 = 56.86 dBm for 6 GHz frequency band, used for future mobile communication or 5G technology.

Keywords

Cascode topology LNA Pie matching Shunt capacitive feedback Source degenerate topology 

References

  1. 1.
    Hindawi Wireless Communication and Mobile Computing (2018). Article Id 1438060,  https://doi.org/10.1155/2018/1438060
  2. 2.
    Mudavath, M., et al.: Design of CMOS RF front-end of low noise amplifier for LTE system application. Asian J. Inf. Technol. 20(15), 4040–4047 (2016)Google Scholar
  3. 3.
    Jha, P., et al.: Design of RF front end LNA for an ultra wideband receiver. J. Electron. Devices (13), 1006–1011Google Scholar
  4. 4.
    Hindawi Wireless Communication and Mobile Computing (2018). Article Id 6793814,  https://doi.org/10.1155/2018/6793814
  5. 5.
    GSMA 5G spectrum position offer a Roadmap for Regulations. https://www.gsma.com/spectrum/resources/5g-spectrum-positions/
  6. 6.
    Taylor and Francis: High performance capacitive shunt feedback LNA. J. Electromagn. Waves Appl. 30(5), 612–625Google Scholar
  7. 7.
    Liao, H.Y., Lu, Y.T., Deng, J.D.S., Chiou, H.K.: Feed-forward correction technique for a high linearity WiMAX differential low noise amplifier. In: International Conference on Radio-Frequency Integration Technology, December 2007, Singapore (2007)Google Scholar
  8. 8.
    Ragheb. A.N.: A 3.1-10.6 GHz low power high gain UWB LNA using current reuse technique. İn: International Conference on Intelligent and Advanced System, no. 2, 741–744 (2012)Google Scholar
  9. 9.
    Aditi, Bansal, M.: A- high linearity and low noise shunt resistive feedback UWB LNA. İn: International Conference on İnformation and Communication Technology, April 2018Google Scholar
  10. 10.
    Chang, C.-W.: A 1-V 14.6 dB gain LNA for Wi-Max 2-6 GHz applications. In: International Conference on Symposium Circuits and Systems, pp 1039-1041, September 2009Google Scholar
  11. 11.
    Visweswaran, A., Serdijn, W.A.: A low power UWB-LNA using active dual loop negative feedback in CMOS 0.13 μm. In: Proceedings of IEEE International Symposium on Circuits and Systems, Taipei, pp. 225–228 (2009)Google Scholar
  12. 12.
    Vishwakarma, S., Jung, S., Joo, Y.: Ultra wide band CMOS low noise amplifier with active input matching. In: Proceedings of International Conference on Ultra Wideband Systems and Technology, pp. 415–419, May 2004Google Scholar
  13. 13.
    Bevilacqua, A., Niknejad, A.M.: An ultra-wideband CMOS LNA for 3.1 to 10.6 GHz wireless receiver. In: Proceedings of IEEE ISSCC Digest, pp. 382–383 (2004)Google Scholar
  14. 14.
    Hirt, W.: Ultra-wideband radio technology: overview and future research. Comput. Commun. 26(1), 46–52 (2003)CrossRefGoogle Scholar
  15. 15.
    Wheeler, A.: Commercial applications of wireless sensor networks using ZigBee. IEEE Commun. Mag. 45(4), 70–77 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringDelhi Technological UniversityDelhiIndia

Personalised recommendations