Enhanced TCP to Improve the Network Communication Performance in Smart Metering Applications

  • M. Rajiv SureshEmail author
  • V. Subedha
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 98)


Smart metering is considered as a crucial system in Smart Metering Infrastructure (SMI). It efficiently helps in utilizing the electric energy by both providers and customers. In recent times, numerous researches have been carried out in the field of SMI to improve the interaction between the users and the servers. This requires the integration of smart meter networks with information technology (IT) infrastructure. Such integration helps to transmit different data types like messages of electrical usage, control messages like availability and latency and other information between the server and users. To efficiently transfer the data between the server and users, the enhanced TCP mechanism is used. The proposed study uses TCP Hybla in its transport layer to effectively deliver the data via a scalable communication channel. The result shows that the utilization of TCP Hybla in SMI effectively improves the communication performance in terms of increased throughput and reduced delay.


Smart Metering Infrastructure TCP Hybla Transport layer High throughput Less latency 


  1. 1.
    Fang, X., Misra, S., Xue, G., Yang, D.: Smart grid—the new and improved power grid: a survey. IEEE Commun. Surv. Tutor. 14(4), 944–980 (2011)CrossRefGoogle Scholar
  2. 2.
    Khalifa, T., Atef, A., Kshirasagar, N., Maazen, A., Amiya, N., Nishith, G.: Design and analysis of split-and aggregated-transport control protocol (SA-TCP) for smart metering infrastructure. In: 2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm), pp. 139–144. IEEE (2012)Google Scholar
  3. 3.
    Zhang, Y., Rong, Y., Nekovee, M., Liu, Y., Xie, S., Gjessing, S.: Cognitive machine-to-machine communications: visions and potentials for the smart grid. IEEE Netw. 26(3), 6–13 (2012)CrossRefGoogle Scholar
  4. 4.
    Wang, W., Yi, X., Khanna, M.: A survey on the communication architectures in smart grid. Comput. Netw. 55(15), 3604–3629 (2011)CrossRefGoogle Scholar
  5. 5.
    Gao, J., Xiao, Y., Liu, J., Liang, W., Chen, C.P.: A survey of communication/networking in smart grids. Future Gener. Comput. Syst. 28(2), 391–404 (2012)CrossRefGoogle Scholar
  6. 6.
    Kuzlu, M., Pipattanasomporn, M., Rahman, S.: Communication network requirements for major smart grid applications in HAN, NAN and WAN. Comput. Netw. 67, 74–88 (2014)CrossRefGoogle Scholar
  7. 7.
    Khalifa, T., Abdrabou, A., Naik, K., Alsabaan, M., Nayak, A., Goel, N.: Split-and aggregated-transmission control protocol (SA-TCP) for smart power grid. IEEE Trans. Smart Grid 5(1), 381–391 (2013)CrossRefGoogle Scholar
  8. 8.
    Sood, V.K., Fischer, D., Eklund, J.M., Brown, T.: Developing a communication infrastructure for the smart grid. In: 2009 IEEE Electrical Power & Energy Conference (EPEC), pp. 1–7. IEEE (2009)Google Scholar
  9. 9.
    Fan, Z., Kulkarni, P., Gormus, S., Efthymiou, C., Kalogridis, G., Sooriyabandara, M., Zhu, Z., Lambotharan, S., Chin, W.H.: Smart grid communications: overview of research challenges, solutions, and standardization activities. IEEE Commun. Surv. Tutor. 15(1), 21–38 (2012)CrossRefGoogle Scholar
  10. 10.
    Salam, S.A., Mahmud, S.A., Khan, G.M., Al-Raweshidy, H.S.: M2M communication in smart grids: implementation scenarios and performance analysis. In: 2012 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), pp. 142–147. IEEE (2012)Google Scholar
  11. 11.
    Fadel, E., Gungor, V.C., Nassef, L., Akkari, N., Malik, M.A., Almasri, S., Akyildiz, I.F.: A survey on wireless sensor networks for smart grid. Comput. Commun. 71, 22–33 (2015)CrossRefGoogle Scholar
  12. 12.
    Wierman, A., Osogami, T.: A unified framework for modeling TCP-Vegas, TCP-SACK, and TCP-Reno. In: 2003 11th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer Telecommunications Systems, MASCOTS 2003, pp. 269–278. IEEE, October 2003Google Scholar
  13. 13.
    Rajiv Suresh, M., Subedha, V.: Realistic technologies and protocols for smart metering infrastructure. Int. J. Appl. Eng. Res. 10(17), 13295–13300 (2015). ISSN 0973-4562Google Scholar
  14. 14.
    Rajiv Suresh, M., Subedha, V.: Optimization of smart metering infrastructure using TCP data aggregation framework. J. Adv. Res. Dyn. Control. Syst. 10(Special Issue 12), 1306–1313 (2018)Google Scholar
  15. 15.
    Rajiv Suresh, M., Subedha, V.: Analysis of transport control protocol mechanism with spanning tree for smart metering infrastructure. In: International Conference on Recent Developments in Computer & Information Technology, Proceedings of 204th The IIER International Conference, Dubai, UAE, 1st–2nd December 2018, pp. 62–66 (2018)Google Scholar
  16. 16.
    Utsumi, S., Zabir, S.M.S., Usuki, Y., Takeda, S., Shiratori, N., Kato, Y., Kim, J.: A new analytical model of TCP Hybla for satellite IP networks. J. Netw. Comput. Appl. 124, 137–147 (2018)CrossRefGoogle Scholar
  17. 17.
    Caini, C., Firrincieli, R.: TCP Hybla: a TCP enhancement for heterogeneous networks. Int. J. Satell. Commun. Netw. 22(5), 547–566 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.St. Peter’s Institute of Higher Education and ResearchChennaiIndia
  2. 2.Panimalar Institute of TechnologyChennaiIndia

Personalised recommendations