Simple and Coverage Path Planning for Robots: A Survey

  • R. S. D. PragnaviEmail author
  • Akhileshwar Maurya
  • Bharath N. Rao
  • Akash Krishnan
  • Srijan Agarwal
  • Maya Menon
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 98)


Path planning plays a significant role in most of the applications in the field of robotics. Path planning ensures that the robot follows a planned and efficient path in the environment. This paper discusses the types of path planning, i.e., simple and coverage path planning. It explores the advancements made in the research and development of various algorithms and approaches under the two types. It also discusses the application of these path planning strategies in real-life scenarios. The final section describes the application of path planning in search and rescue operations in a disaster environment. Based on the study, some algorithms and approaches are suggested for the most efficient use of the robot in this scenario.


Robotics Simple Path Planning Coverage Path Planning Search operation 


  1. 1.
    Chester, D.: International federation of red cross and red crescent societies, world disasters report 1994 (book review). Third World Plann. Rev. 17(3), 357 (1995) Google Scholar
  2. 2.
    Murphy, R.R.: A decade of rescue robots. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5448–5449. IEEE (2012)Google Scholar
  3. 3.
    Randria, I., Khelifa, M.M.B., Bouchouicha, M., Abellard, P.: A comparative study of six basic approaches for path planning towards an autonomous navigation. In: IECON 2007-33rd Annual Conference of the IEEE Industrial Electronics Society, pp. 2730–2735. IEEE (2007)Google Scholar
  4. 4.
    Zarembo, I., Kodors, S., et al.: Pathfinding algorithm efficiency analysis in 2D grid. In: Proceedings of the 9th International Scientific and Practical Conference, vol. 1 (2013)Google Scholar
  5. 5.
    Chaudhari, A.M., Apsangi, M.R., Kudale, A.B.: Improved a-star algorithm with least turn for robotic rescue operations. In: International Conference on Computational Intelligence, Communications, and Business Analytics, pp. 614–627. Springer (2017)Google Scholar
  6. 6.
    Liu, X., Gong, D.: A comparative study of a-star algorithms for search and rescue in perfect maze. In: 2011 International Conference on Electric Information and Control Engineering, pp. 24–27. IEEE (2011)Google Scholar
  7. 7.
    Cheah, M., Gilday, K., Hughes, J.: Cambridge robotics robocup virtual rescue simulationGoogle Scholar
  8. 8.
    Ammar, A., Bennaceur, H., Chaari, I., Koubaa, A., Alajlan, M.: Relaxed Dijkstra and A* with linear complexity for robot path planning problems in large-scale grid environments. Soft. Comput. 20(10), 4149–4171 (2016) CrossRefGoogle Scholar
  9. 9.
    Choset, H.: Coverage for robotics-a survey of recent results. Ann. Math. Artif. Intell. 31(1–4), 113–126 (2001)CrossRefGoogle Scholar
  10. 10.
    Galceran, E., Carreras, M.: A survey on coverage path planning for robotics. Robot. Auton. Syst. 61(12), 1258–1276 (2013)CrossRefGoogle Scholar
  11. 11.
    Coenen, S., Steinbuch, M.M.: Motion planning for mobile robots a guide. Control Syst. Technol. 79 (2012)Google Scholar
  12. 12.
    Giesbrecht, J.: Global path planning for unmanned ground vehicles. Technical report, defence research and development suffield (alberta) (2004)Google Scholar
  13. 13.
    Soltani, S., Tawfik, H., Goulermas, J., Fernando, T.: Path planning in construction sites: performance evaluation of the dijkstra, A, and GU search algorithms. Adv. Eng. Inf. 16(4), 291–303 (2002).
  14. 14.
    Yang, S.X., Luo, C.: A neural network approach to complete coverage path planning. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 34(1), 718–724 (2004)CrossRefGoogle Scholar
  15. 15.
    Atkar, P.N., Greenfield, A., Conner, D.C., Choset, H., Rizzi, A.A.: Uniform coverage of automotive surface patches. Int. J. Robot. Res. 24(11), 883–898 (2005).
  16. 16.
    Hert, S., Tiwari, S., Lumelsky, V.: A Terrain-Covering Algorithm for an AUV, pp. 17–45. Springer, Boston (1996)Google Scholar
  17. 17.
    Cao, Z.L., Huang, Y., Hall, E.L.: Region filling operations with random obstacle avoidance for mobile robots. J. Robot. Syst. 5(2), 87–102 (1988).
  18. 18.
    Spires, S.V., Goldsmith, S.Y.: Exhaustive geographic search with mobile robots along space-filling curves. In: Drogoul, A., Tambe, M., Fukuda, T., (eds.) Collective Robotics, pp. 1–12. Springer, Heidelberg (1998)Google Scholar
  19. 19.
    Choi, Y., Lee, T., Baek, S., Oh, S.: Online complete coverage path planning for mobile robots based on linked spiral paths using constrained inverse distance transform. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5788–5793, October 2009Google Scholar
  20. 20.
    Latombe, J.: Boston, Kluwer Academic (1991).
  21. 21.
    Galceran, E., Carreras, M.: Efficient seabed coverage path planning for ASVs and AUVs. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (2012)Google Scholar
  22. 22.
    Devi, A., Vanualailai, J., Kumar, S.A., Sharma, B.: A cohesive and well-spaced swarm with application to unmanned aerial vehicles. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 698–705, Miami (2017).
  23. 23.
    Geedhu, K.V., Ramachandran, K.I., Adarsh, S.; Canfis based robotic navigation. In: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1660–1664, Udupi (2017).
  24. 24.
    Gopalapillai, R., Gupta, D., Sudarshan, T.S.B.: Experimentation and analysis of time series data for rescue robotics. In: Thampi, S.M., Abraham, A., Pal, S.K., Rodriguez, J.M.C. (eds.) Recent Advances in Intelligent Informatics, pp. 443–453. Springer, Cham (2014)Google Scholar
  25. 25.
    VanderHeide, J.: Terrain coverage of an unknown room by an autonomous mobile robot, December 1995Google Scholar
  26. 26.
    Suresh, A., Ajithkumar, N., Kalathil, S.T., Simon, A., Unnikrishnan, V.J., Mathew, D.P., Basil, P., Dutt, K., Udupa, G., Hariprasad, C.M., Menon, M., Balakrishnan, A., Ramachandran, R., Murali, A., Shankar, B.: An advanced spider-like rocker-bogie suspension system for mars exploration rovers. In: Robot Intelligence Technology and Applications 4, Part of the Advances in Intelligent Systems and Computing book series, vol. 447, pp. 423–447. Springer, Cham (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • R. S. D. Pragnavi
    • 1
    Email author
  • Akhileshwar Maurya
    • 1
  • Bharath N. Rao
    • 1
  • Akash Krishnan
    • 1
  • Srijan Agarwal
    • 1
  • Maya Menon
    • 1
  1. 1.Department of Computer Science and EngineeringAmrita Vishwa VidyapeethamKollamIndia

Personalised recommendations