Designing Features of Parallel Computational Algorithms for Solving of Applied Problems on Parallel Computing Systems of Cluster Type

  • Gennady Shvachych
  • Volodymyr BusyginEmail author
  • Khohlova Tetyana
  • Boris Moroz
  • Fedorov Evhen
  • Kholod Olena
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 98)


Paper considers problems of constructing maximum parallel forms of the algorithms of difference schemes, which are used to solve applied problems. The parallelization features are revealed by piecewise-analytical method of lines and the permutations’ method. This is possible owing to the fact that the proposed approach excludes the recurrent structure for computation of the desired decision vectors, which, as a rule, leads to the rounding errors’ accumulation. The parallel form of the algorithm made in this way is maximal, and, hence, has the minimum possible algorithm’s implementation time using parallel computing systems.


Multiprocessor system Parallel algorithms Applied problems Finite differences Permutation method Parallelization 


  1. 1.
    Rouche, P.J.: Computational Fluid Dynamics. The World, Moscow (1980). 616Google Scholar
  2. 2.
    Shvachych, G.G., Ivaschenko, O.V., Busygin, V.V., Fedorov, Y.Y.: Parallel computational algorithms in thermal processes in metallurgy and mining. Naukovyi Visnyk Natsionalnogo Hirnychogo Universytetu. Sci. Tech. J. 4(166), 129–137 (2018)Google Scholar
  3. 3.
    Na, T.Y.: Computational Methods in Engineering Boundary Value Problems. The World, Moscow (1982). 296Google Scholar
  4. 4.
    Ivaschenko, V.P., Shvachych, G.G., Sobolenko, A.V., Protopopov, D.V.: Information system of intellectual decision-making support of the rolling process. East Eur. J. Adv. Technol. 3, 4–10 (2003). Ивaщeнкo B.П., Швaчич Г.Г., Coбoлeнкo A. B., Пpoтoпoпoв Д. B.: Инфopмaциoннaя Cиcтeмa Интeллeктyaльнoй Пoддepжки Пpинятия Peшeний Пpoцecca Пpoкaтки // Bocтoчнo- Eвpoпeйcкий Жypнaл Пepeдoвыx Texнoлoгий. 3. 4 –10 (2003)Google Scholar
  5. 5.
    Voevodin, V.V., Voevodin, V.V.: Parallel Computations. BHV-Petersburg, Sankt Peterburg (2002). 600zbMATHGoogle Scholar
  6. 6.
    Shvachych, G., Shlomchak, G., Moroz, B., Fedorov, E., Kozenkov, D.: Automated control of temperature regimes of alloyed steel products based on multiprocessors computing systems. Metalurgija 58, 299–302 (2019)Google Scholar
  7. 7.
    Shvachych, G., Moroz, B., Pobocii, I, Kozenkov, D., Busygin, V.: Automated control parameters systems of technological process based on multiprocessor computing systems. In: Advances in Intelligent Systems and Computing, Las Vegas, Nevada, USA, vol. 2, p. 763. Springer (2019)Google Scholar
  8. 8.
    Evans, D.J. (ed.): Parallel Processing Systems. Moscow, p. 416 (1985)Google Scholar
  9. 9.
    Shvachych, G.G., Pobochii, I.A., Ivaschenko, E.V., Busygin, V.V.: Research of the problem of compatibility in the multi-processing compound systems. Sci. Rev. 1(2(9)), 19–23 (2018)Google Scholar
  10. 10.
    Khokhlyuk, V.I.: Parallel algorithms for ınteger optimization. Radio and Communications, Moscow, 224 p. (1987)Google Scholar
  11. 11.
    Yanenko, N.N.: The Method of Fractional Steps for Solving Multidimensional Problems in Mathematical Physics. Science, Novosibirsk (1967). 196 pzbMATHGoogle Scholar
  12. 12.
    Kovenya, V.M., Janenko, N.N.: The Method of Fractional Steps for Solving Multidimensional Problems of Mathematical Physics. Novosibirsk, 304 (1981)Google Scholar
  13. 13.
    Ivaschenko, V.P., Shvachych, G.G., Shmukin, A.A.: Parallel computations and applied problems of metallurgical thermophysics. Syst. Technol.: Reg. Interuniv. Collect. Sci. Works 123–138, 56 (2008)Google Scholar
  14. 14.
    Ivaschenko, V.P., Shvachych, G.G., Tkach, M.A.: Specifics of constructing of maximally parallel algorithmic forms of the solving of the applied tasks. Syst. Technol.: Reg. Interuniv. Collect. Sci. Works 3–9, 91 (2014)Google Scholar
  15. 15.
    Shvachych, G.G., Moroz, B.I., Pobochii, I.A., Ivaschenko, E.V., Busygin, V.V.: Maximally parallel forms of distributed simulation of the dynamic system. World Sci. 1(4(32)), 12–20 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Gennady Shvachych
    • 1
  • Volodymyr Busygin
    • 1
    Email author
  • Khohlova Tetyana
    • 1
  • Boris Moroz
    • 2
  • Fedorov Evhen
    • 3
  • Kholod Olena
    • 4
  1. 1.National Metallurgical Academy of UkraineDniproUkraine
  2. 2.University of TechnologyDniproUkraine
  3. 3.Cherkasy State Technological UniversityCherkasyUkraine
  4. 4.University of Alfred Nobel UniversityDniproUkraine

Personalised recommendations